(タイトルペーパー)

本稿は、アメリカ合衆国労働省職業安全衛生局(Occupational Safety and Health Administration:略称 US-OSHA)が、その関連するウェブサイトで公開している OSHA 技術マニュアル(OTM)

第Ⅱ部:第2章

表面汚染物質、皮膚ばく露、生物学的モニタリング及びその他の分析

についての、原則として(ただし、「Table A-1. OSHA PELS and ACGIH TLVS With Skin Designations/Notations(表 A-1. OSHA PELS 及び ACGIH TLVS (皮膚の指定/表記付き)」については日本語仮訳は行っていません。)全文について、「原典の英語原文—日本語仮訳」の形式で紹介するものです。

○本稿の作成年月:2025年10月

○本稿の作成者 : 中央労働災害防止協会技術支援部国際課

事項	英語原文	左欄の日本語仮訳	
原典の名称	OSHA Technical Manual (OTM)	OSHA 技術マニュアル (OTM)	
	Section II: Chapter 2	第 II 部:第 2 章	
	Surface Contaminants, Skin Exposure, Biological Monitoring and	表面汚染物質、皮膚ばく露、生物学的モニタリング及びその他の分	
	Other Analyses	析	
原典の所在	https://www.osha.gov/otm/section-2-health-hazards/chapter-		
	2#Wipe_Sampling_BioMonitoring		
発行者	US-OSHA	アメリカ合衆国労働省職業安全衛生局	
著作権について	Freedom of Information Act(情報の自由法)によって、自由に利用		
	できます		

Table of Contents:

- I. Introduction
- II. Basics of Skin Exposure
- III. Wipe Sampling, Field Portable X-Ray Fluorescence Sampling, Dermal Sampling and Biological Monitoring
- IV. Sampling Methodology
- V. Other Analyses
- VI. Enforcement Recommendations
- VII. Custom Services Provided by SLTC
- VIII. References
 - Appendix A Chemicals Noted for Skin Absorption
 - Appendix B Biological Exposure Guidelines
 - Appendix C Procedures for Collecting Wipe Samples

Appendix D Combustible Dust Bulk Sampling

目次:

- I. はじめに
- II. 皮膚ばく露の基礎
- III. ワイプサンプル採取、現場ポータブル蛍光 X 線サンプリング、 皮膚サンプル採取、生物学的モニタリング
- IV. サンプリング方法
- V. その他の分析
- VI. 施行勧告
- VII. SLTC が提供するカスタムサービス
- VIII. 参考文献
- ・付録 A 皮膚吸収が注目される化学物質
- ・付録 B 生物学的ばく露ガイドライン
- ・付録 C ワイプサンプル採取手順
- ・付録 D 可燃性粉じんバルクサンプル採取

I. Introduction

The purpose of this chapter is to provide guidance to OSHA Compliance Safety | 本章の目的は、OSHA コンプライアンス安全衛生責任者(CSHO)及び産業衛

I. はじめに

and Health Officers (CSHOs) and to the industrial hygiene community on the potential for skin exposure to chemicals in the workplace and the available means of assessing the extent of skin exposure. This chapter provides guidance for the use and interpretation of surface wipe sampling for assessing potential contamination which may lead to biological uptake through inhalation, ingestion, or dermal exposure. This chapter discusses methods for assessing skin contamination, such as dermal dosimeters (e.g., sorbent pads) and dermal wipe sampling, and provides guidance for monitoring of biological uptake. Finally, this chapter provides guidance for certain specialized analyses unrelated to dermal exposure, such as soil analysis, materials failure analysis, explosibility determinations, and identification of unknowns.

Skin exposure to chemicals in the workplace is a significant problem in the United States. Both the number of cases and the rate of skin disorders exceed recordable respiratory conditions. In 2010, 34,400 recordable skin diseases or disorders were reported by the Bureau of Labor Statistics (BLS) at a rate of 3.4 illnesses per 10,000 full-time employees, compared to 19,300 respiratory conditions with a rate of 1.9 illnesses per 10,000 full-time employees (BLS, 2011).

In addition to causing skin diseases, many chemicals that are readily absorbed through the skin can cause other health effects and contribute to the dose absorbed by inhalation of the chemical from the air. Skin absorption can occur without being noticed by the worker. This is particularly true for non-volatile chemicals that are hazardous and which remain on work surfaces for long

生関係者に対し、職場における化学物質への皮膚ばく露の可能性と、皮膚ばく露の程度を評価するための利用可能な手段に関するガイダンスを提供することです。本章では、吸入、経口摂取又は経皮ばく露による生物学的吸収につながる可能性のある汚染を評価するための表面ワイプサンプリングの使用と解釈に関するガイダンスを提供します。本章では、経皮線量計(吸着パッド等)や経皮ワイプサンプリングといった皮膚汚染の評価方法について解説し、生物学的吸収のモニタリングに関するガイダンスを提供します。最後に、土壌分析、材料破壊分析、爆発性判定、未知物質の同定等、経皮ばく露とは無関係の特定の専門的な分析に関するガイダンスを提供します。

職場における化学物質への皮膚ばく露は、米国において重大な問題です。皮膚疾患の症例数と発生率は、記録対象となる呼吸器疾患の基準を超えています。 2010 年に、労働統計局 (BLS) によって、記録可能な皮膚疾患又は障害が 34,400 件報告され、フルタイム被雇用者 10,000 人当たり 3.4 件の割合でした。一方、呼吸器疾患は 19,300 件で、フルタイム被雇用者 10,000 人当たり 1.9 件の割合でした (BLS、2011)。

皮膚から容易に吸収される化学物質の多くは、皮膚疾患を引き起こすだけでなく、他の健康影響も引き起こし、空気中の化学物質の吸入による吸収量にも寄与します。皮膚吸収は、作業者が気づかないうちに起こることがあります。これは特に、揮発性のない危険な化学物質が作業面に長期間残留する場合に当てはまります。化学物質の皮膚吸収によって引き起こされる職業病の数は不明で

periods of time. The number of occupational illnesses caused by skin absorption of chemicals is not known. However, of the estimated 60,000 deaths and 860,000 occupational illnesses per year in the United States attributed to occupational exposures, even a relatively small percentage caused by skin absorption would represent a significant health risk (Boeniger, 2003).

Biological monitoring refers to testing which is conducted to determine whether uptake of a chemical into the body has occurred. Biological monitoring tests assess a sample of a worker's urine, blood, exhaled breath, or other biological media to evaluate the presence of a chemical or its metabolite, or a biochemical change characteristic of exposure to a particular chemical. Biological exposure guidelines such as the American Conference of Governmental Industrial Hygienists (ACGIH) Biological Exposure Indices (BEIs) are numerical values below which it is believed nearly all workers will not experience adverse health effects. The BEI values correspond to the biological uptake that would occur in workers exposed to airborne concentrations at the ACGIH Threshold Limit Value (TLV). When biological monitoring indicates that workers have been exposed to a chemical, but the airborne concentrations are below any exposure limits, it suggests that exposures are occurring by another route, such as dermal absorption and/or ingestion.

Where other exposure routes are suspected, surface wipe sampling may be useful. Surface wipe sampling in areas where food and beverages are consumed and stored (including water bubblers, coolers, and drinking

すが、米国では職業上のばく露に起因する年間推定6万人の死亡と86万人の職業病のうち、皮膚吸収によるものが比較的少ない割合であっても、重大な健康リスクとなります(Boeniger, 2003)。

生物学的モニタリングとは、化学物質が体内に取り込まれたかどうかを判断するために実施される検査を指します。生物学的モニタリング検査では、作業者の尿、血液、呼気又はその他の生物学的媒体のサンプルを評価し、化学物質又はその代謝物の存在若しくは特定の化学物質へのばく露に特徴的な生化学的変化を評価します。米国産業衛生専門家会議(ACGIH)の生物学的ばく露指数(BEI)等の生物学的ばく露ガイドラインは、その数値以下であればほぼすべての労働者が健康への悪影響を経験しないと考えられる値です。

BEI 値は、ACGIH 閾値(TLV)の空気中濃度にばく露された労働者の生物学的吸収に対応しています。

生物学的モニタリングで労働者が化学物質にばく露されたことが示されても、 空気中濃度がばく露限度を下回っている場合、経皮吸収や経口摂取等、別の経 路によるばく露が示唆されます。

その他のばく露経路が疑われる場合は、表面拭き取りサンプルが有効な場合が あります。食品や飲料を消費及び保管する場所(給湯器、冷蔵庫及び水飲み場 を含む。)の表面拭き取りサンプルは、摂取又は経皮ばく露の可能性を評価する fountains) can be used to assess the potential for ingestion or dermal exposure. Such wipe sampling results can be used to support citations for violations of the Sanitation standard, 29 CFR 1910.141, or the applicable housekeeping provisions of the expanded health standards, such as Chromium (VI), 29 CFR 1910.1026. To assess the potential for skin absorption, surface wipe sampling in work areas may be used to show the potential for contact with contaminated surfaces. Such results could be used to support violations of the Personal Protective Equipment (PPE) standard, 29 CFR 1910.132(a), or applicable provisions of the expanded health standards, such as the Methylenedianiline standard, 29 CFR 1910.1050. For direct assessment of skin contamination, skin wipe sampling or dermal dosimetry may be used.

In addition, <u>Section V</u> of this chapter, Other Analyses, provides guidance for submitting samples to the Salt Lake Technical Center (SLTC) for specialized analyses including:

- Soil analysis in support of the Excavation standard (<u>29 CFR 1926 Subpart P Excavations</u>).
- Materials failure analysis.
- Explosibility determinations including:
 - Combustible dust analysis
 - Flash points
 - Energetic reactivity of chemicals
 - Autoignition temperatures

ために使用できます。このような拭き取りサンプルの結果は、衛生基準、29 CFR 1910.141 又はクロム (VI)、29 CFR 1910.1026 等の拡張健康基準の該当する清掃条項への違反の告発を裏付けるために使用できます。

皮膚吸収の可能性を評価するために、作業エリアでの表面拭き取りサンプルを使用して、汚染された表面との接触の可能性を示すことができます。このような結果は、個人用保護具(PPE)基準、29 CFR 1910.132(a)又はメチレンジアニリン基準、29 CFR 1910.1050 等の拡張健康基準の該当する条項への違反を裏付けるために使用できます。皮膚汚染の直接評価には、皮膚拭い液サンプル採取又は皮膚線量測定法が使用される場合があります。

さらに、本章の第V章「その他の分析」では、ソルトレイク・テクニカル・センター(SLTC)にサンプルを提出し、以下の専門的な分析を行うためのガイダンスを提供しています。

- 掘削基準 (29 CFR 1926 サブパート P 掘削) に基づく土壌分析
- 材料破壊分析。
- 爆発性判定(以下を含む。):
 - 可燃性粉塵分析
 - 引火点
 - 化学物質のエネルギー反応性
 - 自然発火温度

- Biological sampling for organisms (or chemicals associated with their presence) such as:
 - Fungi
 - Bacteria (such as Legionella)
 - Endotoxin (component of the outer membrane of certain gramnegative bacteria)
- Mass spectrometry analysis for identification of unknown materials in:
 - Industrial processes
 - Indoor air samples
 - Contaminated water samples

Many of these tests are labor intensive and custom in nature. Always discuss the need for specialized analysis with the SLTC prior to collecting or sending samples.

Appendix D discusses techniques for combustible dust sampling. Such sampling is conducted where the potential for rapid combustion/burning (deflagration) or violent burning with rapid release of pressure (explosion) is suspected due to the presence of accumulations of settled dust. Bulk samples of settled dust are collected and sent to the SLTC. Lab analysis is used to determine whether the composition of the dust poses an explosion hazard.

- 生物(又はそれらの存在に関連する化学物質)の生物学的サンプリング
 - 真菌
 - 細菌 (レジオネラ菌など)
 - エンドトキシン(特定のグラム陰性細菌の外膜成分)
- 質量分析による未知物質の同定:
 - 工業プロセス
 - 室内空気サンプル
 - 汚染水サンプル

これらの試験の多くは労働集約的で、カスタムメイドの性質を帯びています。 サンプルを採取又は送付する前に、必ずソルトレイク・テクニカル・センター (SLTC) に専門的な分析の必要性についてご相談ください。

付録 D では、可燃性粉じんのサンプリング方法について説明しています。このようなサンプリングは、沈降粉じんの堆積により、急速な燃焼(爆燃)又は急速な圧力解放を伴う激しい燃焼(爆発)の可能性が疑われる場合に実施されます。沈降粉じんのバルクサンプルを採取し、SLTC に送付します。ラボ分析により、粉じんの組成が爆発の危険性を呈するかどうかを判断します。

II. Basics of Skin Exposure

A. Effects on the Skin

Skin contact with chemicals can result in irritation, allergic response, chemical burns, and allergic contact dermatitis. Irritant dermatitis may be caused by a variety of substances such as strong acids and bases (primary irritants). Some examples of chemicals which are potent irritants include: ammonia, hydrogen chloride, and sodium hydroxide. Generally, primary irritants produce redness of the skin shortly after exposure with the extent of damage to the tissue related to the relative irritant properties of the chemical. In most instances, the symptoms of primary irritation are observed shortly after exposure; however, some chemicals produce a delayed irritant effect because the chemicals are absorbed through the skin and then undergo decomposition within aqueous portions of the skin to produce primary irritants. Ethylene oxide, epichlorohydrin, hydroxylamines, and the chemical mustard agents, such as bis (2-chloroethyl) sulfide, are classic examples of chemicals which must first decompose in the aqueous layers of the skin to produce irritation.

Allergic contact dermatitis, unlike primary irritation, is caused by chemicals which sensitize the skin. This condition is usually caused by repeated exposure to a relatively low concentration chemical which ultimately results in an irritant response. Frequently, the sensitized area of skin is well defined, providing an indication of the area of the skin which has been in contact with the sensitizing material.

II. 皮膚ばく露の基礎

A. 皮膚への影響

化学物質が皮膚に接触すると、刺激、アレルギー反応、化学熱傷及びアレルギー性接触皮膚炎を引き起こす可能性があります。刺激性皮膚炎は、強酸や強塩基(一次刺激物質)等、様々な物質によって引き起こされる可能性があります。強力な刺激物質としては、アンモニア、塩化水素、水酸化ナトリウム等が挙げられます。一般的に、一次刺激物質はばく露後すぐに皮膚の発赤を引き起こし、組織への損傷の程度は化学物質の相対的な刺激性に関係します。ほとんどの場合、一次刺激の症状はばく露後すぐに現れますが、一部の化学物質は皮膚から吸収され、その後皮膚の水分層で分解されて一次刺激物質を生成するため、遅延性の刺激作用を引き起こします。エチレンオキシド、エピクロロヒドリン、ヒドロキシルアミン及びビス(2-クロロエチル)スルフィド等の化学マスタード剤は、皮膚の水層で最初に分解されて初めて刺激を引き起こす化学物質の典型的な例です。

アレルギー性接触皮膚炎は、一次刺激とは異なり、皮膚を感作する化学物質によって引き起こされます。この症状は通常、比較的低濃度の化学物質に繰り返しばく露されることで引き起こされ、最終的に刺激反応を引き起こします。多くの場合、皮膚の感作部位は明確に特定されており、感作物質と接触した皮膚部位が特定できます。

A wide variety of both organic and inorganic chemicals can produce contact dermatitis. Some examples of these chemicals include: aromatic nitro compounds (e.g., 2,4-dinitrochlorobenzene), diphenols (e.g., hydroquinone, resorcinol), hydrazines and phenylhydrazines, piperazines, acrylates, aldehydes, aliphatic and aromatic amines, epoxy resins, isocyanates, many other organic chemicals, and metals (e.g., hexavalent chromium). These substances can also produce contact sensitization. Allergic contact dermatitis is present in virtually every industry, including agriculture, chemical manufacturing, rubber industry, wood, painting, bakeries, pulp and paper mills, healthcare and many others. Also associated with both irritant and allergic contact dermatitis are metalworking fluids (see OSHA's Safety and Health Topics page on Metalworking Fluids).

Lastly, there is a class of chemicals which can produce allergic reactions on the skin after exposure to sunlight or ultraviolet (UV) light. These chemicals are called photosensitizers. Polynuclear aromatic compounds from coke ovens and the petroleum-based tars are examples of chemicals which can be photoactivated on the skin to cause an irritant response.

有機化学物質と無機化学物質の両方において、様々な化学物質が接触皮膚炎を引き起こす可能性があります。これらの化学物質の例としては、芳香族ニトロ化合物(例:2,4-ジニトロクロロベンゼン)、ジフェノール(例:ヒドロキノン、レゾルシノール)、ヒドラジン類及びフェニルヒドラジン類、ピペラジン類、アクリレート類、アルデヒド類、脂肪族並びに芳香族アミン、エポキシ樹脂、イソシアネート類、その他多くの有機化学物質、金属(例:六価クロム)等が挙げられます。これらの物質も接触感作を引き起こす可能性があります。アレルギー性接触皮膚炎は、農業、化学製造、ゴム産業、木材産業、塗装産業、製パン産業、パルプ・製紙工場、医療等、ほぼあらゆる産業で発生しています。また、刺激性接触皮膚炎とアレルギー性接触皮膚炎との両方に関係するものとして、金属加工油があります(OSHA の安全衛生トピックの金属加工油に関するページをご覧ください。)。

最後に、日光や紫外線(UV)へのばく露後に皮膚にアレルギー反応を引き起こす可能性のある化学物質があります。これらの化学物質は光感作物質と呼ばれます。コークス炉から発生する多環芳香族化合物や石油由来のタールなどは、皮膚上で光活性化し、刺激反応を引き起こす化学物質の例です。

B. Skin Absorption

In addition to the effects that chemicals can directly have on the skin, the skin also acts as a pathway for chemicals to be absorbed into the body. The skin

B. 皮膚吸収

化学物質が皮膚に直接及ぼす影響に加えて、皮膚は化学物質が体内に吸収される経路としても機能します。皮膚は主に表皮と真皮との 2 層で構成されていま

primarily consists of two layers—the epidermis and the dermis. The outer layer of the epidermis is composed of a compacted layer of dead epidermal cells called the stratum corneum which is approximately 10-40 micrometers thick. The stratum corneum is the primary barrier for protection against chemical penetration into the body. Its chemical composition is approximately 40 percent protein, 40 percent water, and 20 percent lipid or fat. Because skin cells are constantly being produced by the body, the stratum corneum is replaced by the body approximately every two weeks.

Chemical absorption through the stratum corneum occurs by a passive process in which the chemical diffuses through this dead skin barrier. Estimates of the amount of chemicals absorbed through the skin as discussed below assume that the chemicals passively diffuse through this dead skin barrier and are then carried into the body by the blood flow supplied to the dermis.

A number of conditions can affect the rate at which chemicals penetrate the skin. Physically damaged skin or skin damaged from chemical irritation or sensitization or sunburn will generally absorb chemicals at a much greater rate than intact skin. Organic solvents which defat the skin and damage the stratum corneum may also result in an enhanced rate of chemical absorption. If a chemical breakthrough occurs while wearing gloves or other protective clothing, the substance becomes trapped against the skin, leading to a much higher rate of permeability than with uncovered skin. A worker who wears a glove for an extended period of time experiences enhanced hydration to the

す。表皮の最外層は、角質層と呼ばれる死んだ表皮細胞が凝縮した層で構成されており、厚さは約10~40マイクロメートルです。角質層は、化学物質が体内に浸透するのを防ぐ主要なバリアです。その化学組成は、約40%がタンパク質、40%が水分、20%が脂質または脂肪です。皮膚細胞は体内で絶えず生成されているため、角質層は約2週間ごとに入れ替わります。

角質層を通じた化学物質の吸収は、化学物質がこの死んだ皮膚バリアを通して 拡散するという受動的なプロセスによって起こります。以下に述べるように、 皮膚から吸収される化学物質の量の推定は、化学物質がこの死んだ皮膚バリア を通して受動的に拡散し、その後真皮に供給される血流によって体内に運ばれ ることを前提としています。

化学物質が皮膚に浸透する速度には、いくつかの条件が影響する可能性があります。物理的に損傷を受けた皮膚又は化学物質による刺激、感作又は日焼けによって損傷を受けた皮膚は、通常、無傷の皮膚よりもはるかに高い速度で化学物質を吸収します。皮膚の脂分を除去し、角質層を損傷する有機溶剤も、化学物質の吸収速度を高める可能性があります。手袋やその他の防護服を着用した状態で化学物質が侵入すると、その物質は皮膚に閉じ込められ、皮膚を覆っていない場合よりもはるかに高い透過率につながります。

長時間手袋を着用している作業者は、手袋の下に閉じ込められる通常の水分の ために、皮膚の水分補給が促進されます。このような状況下では、手袋の化学 skin simply because of the normal moisture which becomes trapped underneath the glove. Under these conditions, chemical breakthrough or a pinhole leak in a glove can result in greater chemical absorption due to increased friction, contact time with the substance and increased temperature resulting in a higher overall absorption through the skin. In another example, a worker may remove a glove to perform a task which requires increased dexterity, exposing the skin to additional chemical exposure even after redonning the glove.

物質の侵入やピンホール漏れにより、摩擦の増加、物質との接触時間の増加、 温度上昇により、皮膚を通した化学物質の吸収量が増加します。

別の例として、作業者が高度な器用さを必要とする作業を行うために手袋を外すと、手袋を再度装着した後でも皮膚がさらなる化学物質にさらされる可能性があります。

C. Risk Assessment (Establishing a Significant Risk of Skin Exposure)

Risk is determined from the degree of hazard associated with a material, together with the degree of exposure. Note that dermal exposures may vary widely between workers based on individual hygiene practices. The dermal hazard can be ranked based upon the degree of skin damage or systemic toxicity associated with the chemical of interest. Those settings with both a high degree of potential exposure and a high degree of dermal hazard would warrant the closest attention, and justify collecting sampling data to document the potential exposure, such as wipe sampling, skin sampling, or biological monitoring.

In estimating the potential exposure, consider the following:

- The risk of chemical splash.
- Significant differences in work practices between individuals.
- Use of gloves versus hand tools when in direct contact with chemicals.
- Use of shared tools.

C. リスク評価 (皮膚ばく露の重大なリスクの確立)

リスクは、物質に関連する危険性の程度とばく露の程度とを併せて決定されます。皮膚ばく露は、個々の衛生習慣によって作業者間で大きく異なる可能性があることに注意してください。皮膚への危険性は、対象となる化学物質に関連する皮膚損傷又は全身毒性の程度に基づいてランク付けできます。ばく露の可能性と皮膚への危険性の両方が高い作業環境には、細心の注意を払う必要があり、ワイプサンプル、皮膚サンプル、生物学的モニタリング等、潜在的なばく露を記録するためのサンプリングデータを収集することが正当化されます。

潜在的なばく露を推定する際には、以下の点を考慮してください。

- ・化学物質の飛散のリスク。
- ・ 作業者間の作業方法の大きな違い。
- ・ 化学物質に直接接触する際の手袋と手工具の併用
- ・ 共用工具の使用。

 Cleaning frequencies for tools and equipment, including doorknobs, telephones, light switches, keyboards and actuators on control panels. ・ドアノブ、電話、照明スイッチ、キーボード、制御盤のアクチュエーター等 の工具及び機器の清掃頻度

The dermal exposure potential can be ranked based upon the:

- Frequency and duration of skin contact.
- The amount of skin in contact with the chemical.
- The concentration of the chemical.
- The likely retention time of the material on the skin (e.g., highly
 volatile or dry powdery materials are not likely to remain in contact
 with the skin, whereas materials with a higher molecular weight and
 sticky materials will remain in contact with the skin and thus be
 available for dermal exposure).
- The potential for dermal absorption, as described below.

on the body. In certain instances dermal exposure is the principal route of exposure, especially for chemicals which are relatively non-volatile. For example, biological monitoring results of coke oven workers coupled with air monitoring of the workers' exposure demonstrated that 51 percent of the average total dose of benzo[a]pyrene absorbed by coke oven workers occurred via skin contact (VanRooij et al., 1993). Studies of workers in the rubber industry suggest that exposure to genotoxic chemicals present in the workplace is greater via the skin than via the lung (Vermeulen et al., 2003).

Dermal exposures will contribute significantly to overall exposure for those

The absorption of chemicals through the skin can have a systemic toxic effect

経皮ばく露の可能性は、以下の要素に基づいてランク付けできます。

- ・ 皮膚接触の頻度と期間
- ・化学物質と接触する皮膚の量
- ・化学物質の濃度
- ・物質が皮膚に残留する可能性のある時間(例えば、揮発性の高い物質や乾燥した粉末状の物質は皮膚に接触したままでいる可能性は低いですが、分子量の大きい物質や粘着性のある物質は皮膚に接触したままでいるため、経皮ばく露の可能性があります。)。
- ・以下に説明する経皮吸収の可能性

化学物質が皮膚から吸収されると、全身的な毒性作用を及ぼす可能性があります。特に揮発性が比較的低い化学物質の場合、経皮ばく露が主なばく露経路となる場合もあります。例えば、コークス炉作業員の生物学的モニタリング結果と作業員のばく露に関する大気モニタリングとを組み合わせ、コークス炉作業員が吸収したベンゾ[a]ピレンの平均総投与量の 51%が皮膚接触によって生じたことが実証されました (VanRooij et al., 1993)。ゴム産業の労働者を対象とした研究では、職場に存在する遺伝毒性化学物質へのばく露は、肺経由よりも皮膚経由の方が大きいことが示唆されています (Vermeulen et al., 2003)。

多くの農薬のように揮発性が低く経皮浸透性が高い化学物質の場合、経皮ばく 露は総ばく露量に大きく寄与します。化学物質の揮発性を示す指標の一つに、 chemicals with low volatility and high dermal penetration, such as many pesticides. One indicator of the volatility of a chemical is the Vapor Hazard Ratio (VHR). The VHR is the ratio between the vapor pressure (at a given temperature and pressure) and the airborne exposure limit for a chemical; the lower the VHR, the less significant the airborne exposure to vapor and the greater the potential for dermal penetration.

A common indicator of dermal absorption potential is the relative solubility of a material in octanol and water, often called the octanol-water partition coefficient (K_{ow}). This partition coefficient is often expressed in the logarithmic form as Log K_{ow} . Chemicals with a log K_{ow} between -0.5 and + 3.0 are the most likely to penetrate the skin (Ignacio and Bullock, 2006). Chemicals must have some degree of lipid (fat) solubility to absorb into the stratum corneum. To penetrate into thelayer of skin, they must have some degree of solubility in water.

Note also that skin penetration may be increased under conditions of high humidity. When temperatures are elevated, sweating may contribute to increased skin absorption. Wearing ineffective or compromised gloves, for example, may actually increase dermal penetration. Proper selection and maintenance of chemical protective gloves, as required by the PPE standard (29 CFR 1910.132), are essential to ensure effective protection. Subsection E provides additional information regarding glove permeability.

Chemicals for which dermal exposures are recognized as making a significant contribution to overall worker exposure include pesticides, formaldehyde,

蒸気ハザード比 (VHR) があります。

VHR は、蒸気圧(所定の温度及び圧力における)と化学物質の空気中ばく露限界との比です。VHR が低いほど、空気中の蒸気へのばく露は少なく、経皮浸透の可能性が高くなります。

経皮吸収の可能性を示す一般的な指標は、オクタノールと水に対する物質の相対的な溶解度であり、オクタノール-水分配係数(Kow)と呼ばれることがよくあります。この分配係数は、多くの場合、対数で Log Kow として表されます。 log Kow が $-0.5\sim+3.0$ の化学物質は、皮膚に浸透する可能性が最も高くなります(Ignacio and Bullock, 2006)。化学物質が角質層に吸収されるためには、ある程度の脂質溶解度が必要です。皮膚層に浸透するには、ある程度の水溶解度が必要です。

また、高湿度条件下では皮膚浸透が増加する可能性があることにも注意してください。気温が上昇すると、発汗が皮膚吸収の増加に寄与する可能性があります。例えば、効果のない手袋や損傷した手袋を着用すると、皮膚への浸透が実際に増加する可能性があります。PPE 規格(29 CFR 1910.132)で要求されているように、化学防護手袋を適切に選択し、維持管理することは、効果的な保護を確保するために不可欠です。サブセクション E では、手袋の浸透性に関する追加情報を提供しています。

皮膚へのばく露が労働者全体のばく露に大きく寄与していると認識されている 化学物質には、農薬、ホルムアルデヒド、フェノール類、コールタール、クレ phenolics, coal tar, creosote, and acrylamide in grouting operations.

Appendix A lists chemicals with systemic toxicity for which skin absorption is recognized as making a significant contribution to occupational exposure. This list includes only chemicals that have OSHA PELs or ACGIH TLVs and a "skin designation" or "skin notation," and is not intended to be a comprehensive list. This exposure may occur by contact with vapor, aerosols, liquid, or solid materials, and includes contact with the skin, mucous membranes and the eyes. Where high airborne concentrations of vapor or aerosol occur involving a chemical noted for dermal absorption, the issue of exposed skin should be considered carefully. Note also that certain chemicals, such as dimethyl sulfoxide (DMSO) are known to facilitate dermal absorption of other chemicals.

For chemicals which are absorbed through the skin and which are hazardous, the levels of exposure on the skin must be maintained below a level at which no adverse effects would be observed. One of the simplest ways of determining this amount is to estimate the amount of a chemical which can be absorbed into the body based upon an air exposure limit. For example, the OSHA permissible exposure limit (PEL) for methylenedianiline (MDA) is 0.1 parts per million (ppm), or 0.81 milligrams per cubic meter of air (mg/m³). If we assume that the average worker breathes 10 m³ of air in an eight-hour workday, and further assume that all of the MDA is absorbed from the air at the PEL, then the maximum allowable dose to the body per workday becomes:

オソート、グラウト作業におけるアクリルアミド等があります。

付録 A には、全身毒性を有し、皮膚吸収が職業ばく露に大きく寄与していると認識されている化学物質がリストされています。このリストには、OSHA PEL 又は ACGIH TLV で「皮膚への指定」又は「皮膚への注記」が付与されている化学物質のみが含まれており、包括的なリストを意図したものではありません。このばく露は、蒸気、エアロゾル、液体又は固体物質との接触によって発生する可能性があり、皮膚、粘膜、および眼との接触が含まれます。経皮吸収性が高いとされる化学物質が関与する高濃度の蒸気若しくはエアロゾルが空気中に放出された場合、皮膚へのばく露について慎重に検討する必要があります。また、ジメチルスルホキシド (DMSO) 等の特定の化学物質は、他の化学物質の経皮吸収を促進することが知られています。

皮膚から吸収される有害な化学物質については、皮膚へのばく露レベルを、有害な影響が認められないレベル以下に維持する必要があります。このばく露量を決定する最も簡単な方法の一つは、大気ばく露限界に基づいて、体内に吸収される化学物質の量を推定することです。例えば、メチレンジアニリン (MDA) の OSHA 許容ばく露限界 (PEL) は 0.1 ppm (百万分率)、つまり 0.81 mg/m3 (空気 1 立方メートル当たり) です。平均的な労働者が 8 時間労働で 10 m³ の空気を呼吸し、さらに MDA のすべてが PEL の空気から吸収されると仮定すると、1 労働日当たりの身体への最大許容量は次のようになります。

 $(0.81 \text{ mg/m}^3) \times (10 \text{ m}^3) = 8.1 \text{ mg}$ maximum allowable dose to the body for MDA In addition to using OSHA PELs, ACGIH TLVs or other occupational exposure limit (OEL) can also be used to establish the maximum allowable dose in the same manner. This method assumes that the toxic effects of the chemical are systemic and that the toxicity of the chemical is independent of the route of exposure. Note that the concept of a maximum allowable dose cannot be used to enforce compliance with the OSHA PELs for air contaminants (29 CFR 1910.1000) through back-calculation of a measured dermal exposure.

The lethal dose to the skin which results in death to 50 percent of exposed animals (LD_{50} dermal) is also a useful comparative means of assessing dermal exposure hazards. The OSHA acute toxicity definition (defined in $\underline{29}$ CFR $\underline{1910.1200}$ Appendix A, Section A.1.1) as it relates to skin exposure refers to those adverse effects that occur following dermal administration of a single dose of a substance, or multiple doses given within 24 hours. Substances can be allocated to one of four acute dermal toxicity categories according to the numeric cut-off criteria specified in Table 1 below. Acute toxicity values are expressed as approximate LD_{50} dermal values or as acute toxicity estimates or ATE (see Appendix A of 29 CFR 1910.1200 for further explanation on the application of ATE. Refer to Table A.1.2 in Appendix A for Conversions to ATEs).

 $(0.81 \text{ mg/m}^3) \times (10 \text{ m}^3) = 8.1 \text{ mg MDA}$ の体への最大許容量 OSHA PEL に加えて、ACGIH TLV またはその他の職業性ばく露限界(OEL)も同様の方法で最大許容量を設定するために使用できます。この方法は、化学物質の毒性作用が全身性であり、化学物質の毒性がばく露経路に依存しないことを前提としています。最大許容量の概念は、測定された経皮ばく露量を逆算することで、大気汚染物質に関する OSHA PEL(29 CFR 1910.1000)の遵守を強制するために使用することはできないことに注意してください。

ばく露された動物の 50 パーセントが死亡する皮膚への致死量 (経皮 LD50) も、経皮ばく露の危険性を評価する有用な比較手段です。皮膚ばく露に関連する OSHA の急性毒性の定義 (29 CFR 1910.1200 付録 A のセクション A.1.1 で定義) は、物質を単回又は 24 時間以内に複数回経皮投与した後に発生する悪影響を指します。物質は、以下の表 1 で指定された数値カットオフ基準に従って、4 つの急性経皮毒性カテゴリー (分類) のいずれかに割り当てることができます。急性毒性値は、おおよその LD50 経皮値又は急性毒性推定値若しくは ATE として表されます (ATE の適用に関する詳細は、29 CFR 1910.1200の付録 A を参照してください。ATE への変換については、付録 A の表 A.1.2 を参照してください)。

Table 1. Classification Criteria for Acute Dermal Toxicity*

(表 1.急性経皮毒性の分類基準*)

Exposure Route ばく露経路	Category 1 分類 1	Category 2 分類 2	Category 3 分類 3	Category 4 分類 4
Dermal LD ₅₀ (mg/kg bodyweight; rat or rabbit preferred animal species) 経皮 LD50 (mg/kg 体重;推奨動物種:ラット又はウサギ)	≤ 50	> 50 and ≤ 200	> 200 and ≤ 1,000	> 1,000 and ≤
				2,000

^{*} Dermal administration of a single dose of a substance, or multiple doses given within 24 hours. See 29 CFR 1910.1200 Appendix A for classification criteria for mixtures.

Source: Adapted from 29 CFR 1910.1200 Appendix A

* 物質の単回経皮投与又は 24 時間以内に複数回投与。混合物の分類基準については、29 CFR 1910.1200 付録 A を参照。

出典:29 CFR 1910.1200 付録 A より抜粋

If available, the no observable effect level (NOEL) can also be useful in establishing a safe exposure level. Skin notations or skin designations for chemicals listed with ACGIH TLVs or the OSHA PELs are also useful guides; however, many chemicals (e.g., hexone, xylene and perchloroethylene) which can pose a dermal hazard are not designated.

無影響量(NOEL)が利用可能な場合は、安全なばく露レベルを設定する際にも役立ちます。ACGIHのTLV(ばく露限界値)又はOSHAのPEL(ばく露限界値)に記載されている化学物質の皮膚への注意書きや皮膚への指定も有用な指標となりますが、経皮的に有害となる可能性のある多くの化学物質(ヘキソン、キシレン、パークロロエチレン等)は指定されていません。

D. Estimating the Extent of Absorption of Chemicals Through Skin

For exposure to chemicals which are recognized as systemic toxins, that is, chemicals which are toxic once absorbed into the bloodstream, the route of exposure to the chemical may not be important. Hence, the maximum allowable dose can be used as a basis for determining if a chemical poses a skin exposure hazard.

The extent of absorption of a chemical through the skin is a function of the area of the exposed skin, the amount of the chemical, the concentration of the chemical on the skin, the rate of absorption (flux rate) into the skin, and the length of time exposed (Kanerva et al., 2000). Assume, for example, that a worker has contact on the interior portion of both hands to a solution of phenol (10 percent solution by weight) for two hours. Approximately how much phenol would be absorbed? The flux rate, J, is determined by:

 $J = (K_p)$ (Concentration of Chemical on Skin)

Where K_p is skin permeability coefficient of compound in water (cm/hr)

Kp for phenol = 0.0043 cm/hr (K_p values are available in the <u>EPA Dermal Risk</u>

Assessment Guide; EPA/540/R/99/005, 2004)

Thus, at a concentration of 10 percent by weight (10 g/100 cm³; 10,000 mg/100 cm³; or 100 mg/cm³ where 1 cm³ of water weighs 1 g and 1 g equals 1,000 mg):

 $J = (0.0043 \text{ cm/hr}) \times (100 \text{ mg/cm}^3) = 0.43 \text{ mg/(cm}^2 \cdot \text{hr}) \text{(flux rate)}$

D. 化学物質の経皮吸収量の推定

全身性毒素として認識されている化学物質、すなわち血流に吸収されると毒性を示す化学物質へのばく露の場合、ばく露経路は重要ではない可能性があります。したがって、最大許容用量は、化学物質が皮膚ばく露の危険性を有するかどうかを判断する基準として使用できます。

化学物質の経皮吸収量は、ばく露された皮膚の面積、化学物質の量、皮膚上の化学物質の濃度、皮膚への吸収速度(フラックスレート)及びばく露時間に依存します(Kanerva et al., 2000)。例えば、作業者が両手の内側をフェノール溶液(重量比 10%溶液)に 2 時間接触させたと仮定します。およそどのくらいのフェノールが吸収されるでしょうか?透過速度 J は、以下の式で求められます。

J=(Kp)(皮膚における化学物質の濃度)

ここで、Kp は水中における化合物の皮膚透過係数(cm/hr)

フェノールの Kp = 0.0043 cm/hr (Kp 値は EPA 皮膚リスク評価ガイド (EPA/540/R/99/005, 2004) に記載されています。

したがって、濃度が 10 重量% (10 g/100 cm³、10,000 mg/100 cm³、または 100 mg/cm³ (1 cm³の水の重さは 1 g、1 g は 1,000 mg に相当)) の場合、以下の式で求められます。

Hence, under these conditions, 0.43 mg of phenol will be absorbed through the skin per cm² of exposed skin per hour.

Therefore, the absorbed dose of phenol through the skin of a worker's two hands (both hands exposed with an approximate area of 840 cm²) would be determined as follows:

Absorbed Dose = $(840 \text{ cm}^2) \text{ x} (0.43 \text{ mg/(cm}^2 \cdot \text{hr})) (2 \text{ hr}) = 722 \text{ mg}$ absorbed over a two-hour period.

This compares to an allowable dose (PEL = 19 mg/m^3) via the lung for an eighthour exposure of 190 mg [(19 mg/m^3) x (10 m^3)]. Hence, this two-hour exposure via the skin would represent absorption of phenol which is 3.8 times the allowable dose via the lung.

The following hypothetical example illustrates the relative importance of skin absorption as a factor in exposure. Let us assume that a worker is wearing gloves and the gloves are exposed to a phenol solution. Let us further assume that the penetration through the gloves is detected by a hand wipe sample, and that 75 mg of phenol is reported present from a water hand rinse of the worker's hands taken before lunch. Let us further assume that the amount of phenol detected inside the glove at the lunch break represents a uniform constant exposure which occurred shortly after the beginning of the work shift. Finally, let us further assume that the 75 mg of phenol is present in approximately 10 milliliter (mL) of water (perspiration) present on the surface

 $J = (0.0043 \text{ cm/hr}) \text{ x } (100 \text{ mg/cm}^3) = 0.43 \text{ mg/(cm}^2 \cdot \text{hr})$ (透過速度)

したがって、これらの条件下では、0.43~mg のフェノールが皮膚を通して吸収されます。 1~時間当たり、皮膚へのフェノールの吸収量は、ばく露面積 1cm2 あたりで算出されます。

したがって、作業者の両手(ばく露面積が約 840cm2)の皮膚を介したフェノールの吸収量は、次のように算出されます。

吸収量 = (840cm2) x (0.43 mg/(cm2·hr)) (2 時間) = 2 時間で 722mg の吸収。

これは、8 時間ばく露した 190 mg [(19 mg/m3) \times (10 m3)] に対する肺経由の許容量 (PEL = 19 mg/m3) に相当します。したがって、この 2 時間の皮膚経由のばく露は、肺経由の許容量の 3.8 倍のフェノール吸収を表します。

次の仮説的な例は、ばく露要因としての皮膚吸収の相対的な重要性を示しています。作業者が手袋を着用しており、その手袋がフェノール溶液にばく露されたと仮定します。さらに、手袋を貫通したフェノールが手拭きサンプルによって検出され、昼食前に作業員が水で手洗いした際に 75mg のフェノールが検出されると仮定します。さらに、昼食休憩時に手袋の内側で検出されたフェノールの量は、勤務開始直後に発生した均一かつ一定のばく露量を表すと仮定します。

最後に、75mg のフェノールが皮膚表面に存在する約 10 ミリリットル (mL) の水 (汗) に含まれていると仮定します。8 時間の間にどれだけのフェノール

of the skin. How much phenol was absorbed in the eight-hour period?

First, we determine the flux rate: $J = (0.0043 \text{ cm/hr}) \times (75 \text{ mg/}10 \text{ cm}^3) = 0.0322 \text{ mg/}(\text{cm}^2 \cdot \text{hr})$ (flux rate)

Absorbed Dose = $(840 \text{ cm}^2) \text{ x } (0.0322 \text{ mg/(cm}^2 \cdot \text{hr})(8 \text{ hr}) = 216 \text{ mg of phenol}$ absorbed

Hence, the estimated amount of phenol absorbed into the body is greater than the maximum dose of phenol permitted to be absorbed via the lung, which is 190 mg.

が吸収されたのでしょうか?

まず、フラックス速度を求めます。 $J = (0.0043 \text{ cm/hr}) \text{ x} (75 \text{ mg/}10 \text{ cm}3) = 0.0322 \text{ mg/}(\text{cm}2 \cdot \text{hr}) (フラックス速度)$

吸収量 = (840 cm2) x (0.0322 mg/(cm2·hr)(8 時間) = 吸収されたフェノール量 216 mg

したがって、体内に吸収されたフェノールの推定量は、肺から吸収されるフェノールの最大許容量である 190 mg を超えています。

E. Glove Permeability

Permeation is the process by which a chemical moves through a protective clothing material on a molecular basis. This process includes the: 1) Sorption of molecules of the chemical into the contacted (challenge side) surface of the test material; 2) Diffusion of the sorbed molecules in the material; and 3) Desorption of the molecules from the opposite (collection side) surface of the material. Glove manufacturers publish breakthrough data which reflect the length of time which occurs before a chemical permeates through a particular type of glove material. These tests are performed using American Society for Testing and Materials (ASTM) Method F739 (Standard Test Method for Permeation of Liquids and Gases through Protective Clothing Materials under Conditions of Continuous Contact) in which a pure or neat chemical is

E. 手袋の透過性

透過とは、化学物質が分子レベルで防護服の素材を透過するプロセスです。 このプロセスには、1) 試験素材の接触面(チャレンジ面)への化学物質分子の 吸着、

2) 素材内での吸着分子の拡散、3) 素材の反対側(コレクション面)からの分子の脱着が含まれます。手袋メーカーは、化学物質が特定の種類の手袋素材を透過するまでの時間を示す透過データ(ブレークスルーデータ)を公開しています。これらの試験は、米国材料試験協会(ASTM)の F739 法(連続接触条件下での防護服素材を透過する液体及びガスの標準試験方法)に基づいて実施されます。この試験では、純粋又は原液の化学物質を手袋素材の片面に置き、反対側の空気を分析することで、化学物質が手袋素材を透過するまでの時間を測定し、化学物質の透過を検出します。

placed on one side of a section of the glove material and the time it takes to penetrate through the glove material is measured by analyzing the air on the other side of the glove material to detect chemical breakthrough. ASTM F739 measures the initial breakthrough of the chemical through the glove material (normalized or standardized as a rate of 0.1 μ g/cm²/minute) and the rate of permeation. The cumulative amount of chemical that permeates can also be measured or calculated.

Unfortunately, these breakthrough times can be misleading because actual breakthrough times will typically be less than reported by the manufacturer. This is the case because permeation rates are affected by temperature (as temperature increases, permeation rates increase) and the temperature of skin is greater than the test temperature, resulting in an increased permeability rate. Secondly, glove thinning occurs along pressure points where a worker may grip a tool or otherwise exert pressure on an object while wearing a glove. Glove degradation and reuse of gloves can also dramatically reduce a glove's impermeability to chemicals. Additionally, only limited breakthrough data for solvent mixtures is available and in many cases the breakthrough time for a solvent mixture is considerably less than would be predicted from the individual breakthrough times for each of the individual solvent components. Finally, batch variability can also result in wide variations in breakthrough times from one glove to the next (Klingner and Boeniger, 2002). Further, it is difficult to generalize glove breakthrough data from one manufacturer to the next, or even between one model of glove and

ASTM F739 は、手袋素材を通過する化学物質の初期透過速度($0.1~\mu~g/cm2/分$ として正規化または標準化)と透過速度を測定します。また、透過する化学物質の累積量も測定又は計算できます。

残念ながら、これらの破過時間は誤解を招く可能性があります。なぜなら、実際の破過時間は通常、製造元が報告する時間よりも短くなるからです。

これは、浸透速度が温度の影響を受け(温度が上昇すると浸透速度も上昇します。)、皮膚の温度が試験温度よりも高いため浸透速度が上昇するからです。第二に、作業者が手袋を装着したまま工具を握ったり、物体に圧力をかけたりする圧力ポイントでは、手袋が薄くなります。また、手袋の劣化や再利用によっても、化学物質に対する手袋の不浸透性は大幅に低下します。

さらに、溶剤混合物の破過データは限られており、多くの場合、溶剤混合物の 破過時間は、個々の溶剤成分の個々の破過時間から予測されるよりもかなり短 くなります。

最後に、バッチ変動によっても、手袋ごとに破過時間が大きく異なることがあります (Klingner and Boeniger, 2002)。

さらに、手袋の破過性能に関するデータを、メーカー間で、又は同じメーカー であってもモデル間で一般化することは困難です。これは特に使い捨て手袋に another from the same manufacturer. This is particularly true for disposable gloves, since different fillers may be used in the formulation of different gloves, resulting in different breakthrough performance.

As a result of these limitations, it is necessary that the employer evaluate glove selection and use to prevent worker exposure as specified in 29 CFR 1910.132(d). Guidance on conducting in-use testing methods for glove selection is available (Boeniger and Klingner, 2002).

当てはまります。なぜなら、異なる手袋の配合に異なる充填剤が使用されている場合、破過性能も異なる可能性があるからです。

これらの制限のため、使用者は、29 CFR 1910.132(d)に規定されているように、労働者のばく露を防止するために手袋の選択と使用を評価する必要があります。手袋の選択のための使用中試験方法に関するガイダンスが利用可能です(Boeniger and Klingner, 2002)。

III. Wipe Sampling, Field Portable X-Ray Fluorescence Sampling, Dermal Sampling and Biological Monitoring

A. Surface Wipe Sampling

Surface wipe sampling is conducted to assess the presence of a contaminant on surfaces in the workplace that may lead to worker exposure. Surfaces contaminated with a hazardous liquid, particles, or dried residue may be contacted by workers, leading either to dermal exposure or transfer to foodstuffs and accidental ingestion. Settled dusts containing toxic material may be disturbed and resuspended, resulting in inhalation exposure.

In instances where surface contamination is suspected and the employer has not required the use of effective PPE for workers in these areas, wipe sampling may be an effective means of documenting that a skin hazard exists. Wipe sampling can help establish that a significant amount of surface contamination is present in areas in which workers are not effectively

III. ワイプ(拭き取り) サンプリング、フィールドポータブル X 線蛍光サンプリング、皮膚サンプリング及び生物学的モニタリング

A. 表面拭き取りサンプル採取

表面拭き取りサンプル採取は、作業場の表面に汚染物質が存在し、作業員のばく露につながる可能性があるかどうかを評価するために実施されます。危険な液体、粒子又は乾燥した残留物で汚染された表面は、作業員が接触することで経皮ばく露、食品への移行又は誤飲につながる可能性があります。毒性物質を含む沈降粉じんは攪拌されて再浮遊し、吸入ばく露につながる可能性があります。

表面汚染が疑われる場合で、使用者がこれらの区域の作業員に有効な個人用保護具 (PPE) の使用を義務付けていない場合、拭き取りサンプル採取は皮膚への有害性が存在することを文書化する効果的な手段となる可能性があります。拭き取りサンプル採取は、作業員が個人用保護具によって効果的に保護されていない区域に、相当量の表面汚染物質が存在することを立証するのに役立ちま

protected by PPE. Wipe samples taken inside the sealing surface of "cleaned" respirators can establish the absence of an effective respiratory protection program.

In areas where exposures to toxic metals such as lead (Pb) occur, wipe sampling of settled dust can demonstrate that a reservoir for potential exposure exists; resuspension of such settled dusts can lead to inhalation exposure. This is particularly true if improper housekeeping techniques are used, such as: dry sweeping; blowing off surfaces with compressed air; or using a shop vac instead of a HEPA-rated vacuum cleaner.

In break areas, the presence of surface contamination can lead to contamination of foodstuffs and hence, accidental ingestion of toxic material. The same is true for contamination on drinking fountains. Contamination found on the clean side of a shower or locker area could suggest the potential for take-home contamination, resulting in additional toxic exposures occurring while away from work. All of these types of wipe sampling results can be used to support violations of the housekeeping requirements found in the expanded health standards in <u>Subpart Z</u> of 29 CFR 1910.

In many instances, several wipe samples taken in an area suspected of being contaminated may be useful. For example, some surfaces which would be expected to be contaminated with chemicals because of airborne deposition of a non-volatile chemical may actually be relatively free of surface

す。「洗浄済み」の呼吸器の密閉面の内側から採取した拭き取りサンプルは、効果的な呼吸保護プログラムが実施されていないことを立証するのに役立ちます。

鉛(Pb)等の有害金属へのばく露が発生する地域では、沈降粉じんの拭き取りサンプル採取により、潜在的なばく露源の存在を実証できます。このような沈降粉じんが再浮遊すると、吸入ばく露につながる可能性があります。これは、乾式掃き掃除、圧縮空気による表面の吹き飛ばし、HEPAフィルター付き掃除機ではなく業務用掃除機の使用等、不適切な家事管理方法が採用されている場合に特に当てはまります。

休憩エリアでは、表面汚染が食品の汚染につながり、ひいては有毒物質の誤飲 につながる可能性があります。

水飲み場の汚染も同様です。シャワーやロッカーエリアの清潔な側で汚染が見つかった場合、持ち帰り汚染の可能性を示唆し、勤務時間外にさらなる有毒物質へのばく露につながる可能性があります。これらのワイプサンプルの結果はすべて、29 CFR 1910 のサブパート Z に規定されている清掃要件違反を裏付けるために使用できます。

多くの場合、汚染が疑われるエリアで複数のワイプサンプルを採取することが 有用です。例えば、非揮発性化学物質の空気沈着により化学物質で汚染されて いると予想される表面は、実際には作業員が頻繁に接触するため、表面汚染が contamination because of frequent contact of the surface by workers (i.e., frequently contacted surfaces may be expected to be "clean" because of contaminant removal by frequent worker contact). Wipe samples of frequently contacted surfaces in conjunction with less frequently contacted surfaces in the same vicinity can be useful to establish the likelihood that skin exposure is occurring in "clean" areas in which PPE is not being used, or is being improperly used.

Housekeeping deficiencies may also be demonstrated by wipe samples which show major differences in surface contamination between work areas that have been routinely cleaned and areas which have not been recently cleaned. This sampling would allow the CSHO to demonstrate the employer's failure to maintain a clean work area. A reference control wipe sample or samples taken from areas in which exposure is not anticipated will also help to establish the relative amount of surface contamination.

Surface wipe sampling can be conducted qualitatively, for example, wiping irregular surfaces such as a doorknob, tool handle or faucet handle, or quantitatively, in which an area of specified size is wiped. Wiping an area of a specified size is necessary to determine the concentration of a contaminant on a surface. This is needed for estimating the amount of contamination to which workers are potentially exposed. The customary size of the surface area to be wiped is a 10 cm x 10 cm square, i.e., 100 cm². The 100 cm² value approximates the surface area of a worker's palm. Thus, the amount of contaminant in a 100 cm² sample could all be transferred to a worker's hand

比較的少ない場合があります(つまり、頻繁に接触する表面は、作業員の頻繁な接触によって汚染物質が除去されるため、「清潔」であると予想される場合があります。)。頻繁に接触する表面と、同じ付近にあるあまり接触しない表面の拭き取りサンプルとを組み合わせると、PPEが使用されていない、又は不適切に使用されている「清潔な」エリアで皮膚へのばく露が発生している可能性を確認するのに役立ちます。

清掃上の不備は、定期的に清掃されている作業区域と最近清掃されていない区域との表面汚染に大きな違いを示す拭き取りサンプルによっても実証される場合があります。このサンプリングにより、OSHAコンプライアンス安全衛生責任者(CSHO)は使用者が清潔な作業区域を維持できていないことを証明できます。ばく露が予想されない区域から採取した参照用拭き取りサンプルも、表面汚染の相対的な量を確立するのに役立ちます。

表面拭き取りサンプルの採取は、ドアノブ、工具の柄、蛇口のハンドル等の不規則な表面を拭くなど定性的に行うことも、指定されたサイズの領域を拭くなど定量的に行うこともできます。指定されたサイズの領域を拭くことは、表面上の汚染物質の濃度を決定するために必要です。これは、労働者がばく露される可能性のある汚染量を推定するために必要です。拭き取り対象となる表面積の通常のサイズは、10 cm x 10 cm の正方形、つまり 100 cm2 です。 100 cm² という値は、作業者の手のひらの表面積にほぼ相当します。したがって、100 cm²のサンプルに含まれる汚染物質は、接触するとすべて作業者の手に移る可能性があります。

upon contact.

In industries such as the pharmaceutical industry, a common rule of thumb is to use the maximum allowable dose (based on the chemical's airborne exposure limit in units of μ g/m³) and the approximate area of a worker's hand (100 cm²) to arrive at an acceptable value for surface contamination in work areas (i.e., a housekeeping standard). For example, if the eight-hour TWA exposure limit for a chemical is 1 µg/m³, the maximum allowable dose for that chemical is 10 µg. As noted in Section II.C., the chemical's eight-hour time-weighted average (TWA) airborne exposure limit is multiplied by 10 m³, the volume of air inhaled by an average worker in an eight-hour workday, to determine the maximum acceptable dose (i.e., $1 \mu g/m^3 \times 10 m^3 = 10 \mu g$). The maximum acceptable dose is then divided by the area of a worker's hand to determine the acceptable surface limit of 10 µg/100 cm² or 0.1 µg/cm². By this rule of thumb, the amount of contaminant picked up by one hand contacting the contaminated surface is equivalent to the toxic dose allowed by the eighthour TWA airborne exposure limit (determined by multiplying by the 10 m³ of air breathed by an average worker in an eight-hour workday).

For highly toxic materials, hazardous levels of surface contamination will often be invisible to the unaided eye, while limits of detection for wipe sampling will be considerably more sensitive. For example, the limit of visible residue for active pharmaceutical ingredients is typically 1-5 μ g/cm², whereas good surface wipe sampling techniques can have limits of detection in the low nanogram range. This underscores the essential value of surface

製薬業界等の業界では、作業区域における表面汚染の許容値(すなわち、清掃基準)を算出する際に、最大許容量(化学物質の空気中ばく露限界値($\mu g/m^3$ 単位)に基づく)と作業者の手の面積(100 cm².)のおおよその値を用いるのが一般的な経験則です。例えば、ある化学物質の 8 時間 TWA ばく露限界値が 1 $\mu g/m^3$ の場合、その化学物質の最大許容量は $10\,\mu g$ となります。セクション II. C で述べたように、化学物質の 8 時間加重平均(TWA)空気ばく露限界に、平均的な労働者が 8 時間労働で吸入する空気量 $10\,m^3$ を乗じることで、最大許容量(すなわち、 $1\,\mu g/m^3$ x $10\,m^3$ = $10\,\mu g$)が算出されます。次に、この最大許容量を労働者の手の面積で割り、許容表面限界である $10\,\mu g/100\,m^2$ 又は $0.1\,\mu g/cm^2$ を決定します。

この経験則によれば、汚染された表面に触れた片方の手で拾い上げる汚染物質の量は、8時間 TWA 空気ばく露限界(平均的な労働者が8時間労働で呼吸する空気量10 m³ を乗じて算出)で許容される毒性量に相当します。

高毒性物質の場合、表面汚染の危険レベルは肉眼では確認できないことが多い 一方、ワイプサンプリングの検出限界ははるかに高感度です。

例えば、医薬品有効成分の目視可能な残留物の検出限界は通常 $1\sim5\,\mu\,\mathrm{g/cm}^2$ で すが、優れた表面ワイプサンプリング技術を用いれば、ナノグラム単位の検出 限界を実現できます。

これは、鉛や六価クロムなどの高毒性物質が存在する場所において、表面ワイ

wipe sampling in areas where highly toxic materials such as lead or chromium (VI) are present.

プサンプリングが極めて重要であることを示しています。

B. Field Portable X-Ray Fluorescence Sampling

X-ray fluorescence (XRF) provides real-time measurements of elemental metal on surfaces. This may be useful to measure metal in settled dust on contaminated surfaces, or in surface coatings such as on painted metal or wood. A real-time XRF analyzer and operator are available from the Health Response Team. XRF uses the interaction of x-rays with a target material to determine the elements present and their relative concentrations. When the target material has been excited by being bombarded with high-energy x-rays (or gamma rays), the material emits secondary or fluorescent x-rays that are characteristic of each element present. The rate of generation of the emitted fluorescent x-rays is proportional to the elemental concentration and is used to quantify the results.

Because x-rays will penetrate an object, the XRF will detect metals both on the surface and within the substrate of the material. To determine the quantity of removable metal contamination on a work surface, a reading is first taken on the uncleaned surface. The surface is then cleaned with a metal removal wipe until all visible dust, dirt, and debris is removed. After cleaning, a second reading is taken at the same spot and its value is subtracted from

B. フィールドポータブル X 線蛍光サンプリング

蛍光 X 線分析 (XRF) は、表面上の元素金属をリアルタイムで測定します。これは、汚染された表面に付着した粉じんや、塗装された金属や木材等の表面コーティングに含まれる金属を測定するのに役立ちます。リアルタイム XRF 分析装置とオペレーターは、健康対応チームから利用できます。XRF は、X 線と対象物質との相互作用を利用して、存在する元素とその相対濃度を決定します。対象物質が高エネルギー X 線(又はガンマ線)の照射によって励起されると、その物質は存在する各元素の特性である二次 X 線又は蛍光 X 線を放出します。放出される蛍光 X 線の発生率は元素濃度に比例し、結果の定量化に使用されます。

X 線は物体を透過するため、蛍光 X 線分析は物質の表面と基材との両方で金属を検出します。作業面上の除去可能な金属汚染の量を決定するには、まず洗浄されていない表面で読み取りを行います。次に、目に見える埃、汚れ、破片がすべて除去されるまで、金属除去ワイプで表面を清掃します。清掃後、同じ場所で 2 回目の測定を行い、その値を最初の測定値から差し引くことで、表面金属濃度を算出します。

the initial reading to determine the surface concentration of metals.

The same sampling and citation strategies used for wipe sampling apply to XRF sampling. The advantage of XRF over wipe sampling is its rapid (approximately one minute per reading) sampling rate and the real-time results. For laboratory confirmation of XRF results, the area sampled with the XRF can be wipe-sampled using the traditional methods described in this chapter and submitted to the SLTC for analysis.

ワイプサンプリングと同じサンプリング及び引用戦略が、XRF サンプリングにも適用されます。ワイプサンプリングと比較した XRF の利点は、サンプリング速度が速く(1回の測定につき約1分)、結果がリアルタイムで得られることです。XRF の結果を実験室で確認するために、XRF でサンプリングした領域を、本章で説明する従来の方法を用いてワイプサンプリングし、ソルトレイク・テクニカル・センター(SLTC)に提出して分析することができます。

C. Dermal Sampling

Skin sampling is used to estimate the amount of material which contacts the skin and is relevant both for materials that affect the skin, such as corrosive materials, and for materials which absorb through the skin and have systemic effects.

Dermal exposure may be assessed through either direct or indirect methods. Direct methods measure the amount of material which contacts the skin, for example, through wipe tests which remove and recover the material from exposed skin, or use of sorbent patches (dosimeters) which are placed over the skin and capture material which would have contaminated the skin. Indirect methods measure the amount of contaminant that enters the body. Indirect methods are also known as biological monitoring

C. 経皮サンプリング

皮膚サンプリングは、皮膚に接触する物質の量を推定するために用いられ、腐食性物質等の皮膚に影響を与える物質と、皮膚から吸収されて全身性影響を及ぼす物質の両方に関係します。

経皮ばく露は、直接法と間接法のいずれかで評価できます。直接法は、皮膚に接触する物質の量を測定します。例えば、露出した皮膚から物質を除去して回収する拭き取り試験や、皮膚に貼付して皮膚を汚染したであろう物質を捕捉する吸着パッチ(線量計)の使用などが挙げられます。間接法は、体内に侵入する汚染物質の量を測定します。間接法は、生物学的モニタリングとも呼ばれます。

D. Biological Monitoring

Biological monitoring is used to assess uptake into the body of a contaminant of concern. Biological monitoring is defined by the American Industrial Hygiene Association Committee on Biological Monitoring as "the assessment of human exposure through the measurement of internal chemical markers of exposure, such as the chemical agent itself and/or one of its metabolites or an exposure related biochemical change unrelated or related to disease, in human biological samples" such as urine, blood, or exhaled breath (AIHA, 2004). Biological monitoring by itself does not indicate the route of exposure to the material. Airborne sampling, skin sampling, and/or surface sampling would be needed to pinpoint the source of exposure.

Biological monitoring can be a useful technique for determining if dermal exposure is a significant contributor to the worker's overall exposure. For example, in a work environment in which the air exposure to a specific chemical is well controlled, an abnormally elevated biological monitoring result will likely indicate that skin or ingestion is a major mode of exposure. Coupled with evidence of surface contamination, and documentation of poor or non-existent personal protection against chemical skin exposure, biological monitoring can be a valuable means of documenting dermal exposure to a chemical. Biological monitoring could also be used to assess the effectiveness of PPE, such as chemical protective clothing or gloves, or the effectiveness of

生物学的モニタリング

生物学的モニタリングは、懸念される汚染物質体内への取り込みを評価するために使用されます。生物学的モニタリングは、米国産業衛生協会(AIHA)生物学的モニタリング委員会によって、「尿、血液、呼気等のヒトの生物学的サンプルにおける、化学物質自体又はその代謝物若しくは疾患とは無関係若しくは関連するばく露関連の生化学的変化等、ばく露の化学的内部マーカーの測定によるヒトばく露の評価」と定義されています(AIHA, 2004)。生物学的モニタリングだけでは、物質へのばく露経路を特定することはできません。ばく露源を特定するには、空気サンプル、皮膚サンプル、及び/又は表面サンプルの採取が必要になります。

生物学的モニタリングは、経皮ばく露が労働者の全体的なばく露に大きく寄与しているかどうかを判断するための有用な手法となり得ます。例えば、特定の化学物質への空気ばく露が適切に管理されている作業環境において、生物学的モニタリング結果が異常に高い場合、皮膚又は経口摂取が主要なばく露経路であることを示唆している可能性が高くなります。表面汚染の証拠及び化学物質の皮膚ばく露に対する個人防護が不十分叉は全く存在しないことの記録と組み合わせることで、生物学的モニタリングは化学物質への経皮ばく露を記録する貴重な手段となり得ます。生物学的モニタリングは、化学防護服や手袋等の個人用保護具(PPE)の有効性又は空気清浄呼吸器のカートリッジ交換スケジュールの有効性を評価するためにも使用できます。生物学的モニタリングを実施

cartridge change schedules for air-purifying respirators. Prior to conducting biological monitoring, determine the variables that may affect the results including the potential for interferences (e.g., diet, over-the-counter drugs, personal care products, existing medical conditions, other).

Biological monitoring data can hypothetically be used to back-calculate an estimate of the corresponding airborne exposure that would have resulted in observed biological exposure. This requires the availability of adequate exposure modeling for the toxic material of interest. For example, this is done in cases of overt carbon monoxide poisoning, as described below in <u>Section IV.C.1</u>.

Biological monitoring by itself does not indicate that a toxic or adverse health effect has occurred, only that the material has entered the body. Biological exposure guidelines, such as the ACGIH BEIs, are numerical values below which it is believed nearly all workers will not experience adverse health effects. Where measured levels exceed a BEI, this finding provides evidence that exposures have occurred which can result in an adverse health effect. Further, a number of the OSHA expanded health standards in Subpart Z contain biological monitoring provisions. Appendix B summarizes the 2012 ACGIH BEIs and the biological monitoring guidelines contained in the OSHA expanded health standards.

In addition, NIOSH offers guidance for biological monitoring, which may be found at the following link: <u>NIOSH Biological Monitoring Summaries</u>. The NIOSH Biomonitoring Summaries provide a brief overview of the usage,

する前に、干渉の可能性(例:食事、市販薬、パーソナルケア製品、既存の病状、その他)を含め、結果に影響を与える可能性のある変数を特定してください。

生物学的モニタリングデータは、観測された生物学的ばく露につながったであるう対応する空気ばく露の推定値を逆算するために仮説的に使用できます。そのためには、対象となる有毒物質に対する適切なばく露モデルが利用可能である必要があります。例えば、これは、以下のセクション IV.C.1 で説明するように、明白な一酸化炭素中毒のケースで行われます。

生物学的モニタリング自体は、毒性又は健康への悪影響が発生したことを示すものではなく、物質が体内に入ったことを示すだけです。ACGIH BEI 等の生物学的ばく露ガイドラインは、ほぼすべての労働者が健康への悪影響を経験しないと考えられる数値です。測定値が BEI を超える場合、この結果は、健康への悪影響につながる可能性のあるばく露が発生したことを示す証拠となります。さらに、サブパート Z の多くの OSHA 拡張健康基準には、生物学的モニタリング規定が含まれています。付録 B は、2012 年の ACGIH BEI と OSHA 拡張健康基準に含まれる生物学的モニタリングガイドラインをまとめています。

さらに、NIOSHは生物学的モニタリングのガイダンスを提供しており、次のリンクでご覧いただけます: NIOSH 生物学的モニタリング概要。 NIOSH バイオモニタリングサマリーは、「環境化学物質へのヒトばく露に関する国家報告

environmental pathways, sources of exposure, toxicology, health effects, and human exposure information for most of the chemicals or chemical groups evaluated in the National Report on Human Exposure to Environmental Chemicals.

Finally, there are many studies in the peer-reviewed literature that report exposure levels for numerous chemicals measured as biological matrices for workers in a variety of occupations and industries. These studies can be useful, in a comparative fashion, for assessing the extent of exposure between exposed and unexposed workers when the workplace in the study involves the same conditions (e.g., chemical exposure, type of work) as the workplace being inspected.

書」で評価されたほとんどの化学物質又は化学物質群について、使用状況、環 境経路、ばく露源、毒性、健康影響及びヒトばく露情報について簡潔な概要を 提供しています。

最後に、査読済み文献には、様々な職業や産業の労働者について生物学的マト リックスとして測定された多数の化学物質のばく露レベルを報告した研究が多 数あります。これらの研究は、研究対象の職場が検査対象の職場と同じ条件 (化学物質へのばく露、作業の種類等) である場合、ばく露を受けた労働者と ばく露を受けていない労働者のばく露の程度を比較的に評価するのに役立ちま

IV. Sampling Methodology

A. Surface Wipe Sampling

The most common surface testing technique is surface wipe sampling. The Chemical Sampling Information (CSI) file contains wipe sampling information for many of the chemicals regulated by the expanded health standards, including the type of wipe to use.

Frequently, the wipe is dipped in distilled water or other suitable solvent prior to wiping the surface of interest. This technique facilitates transfer of the | 浸します。この方法により、汚染物質が表面からワイプに移行しやすくなりま

IV. サンプリング方法

A. 表面拭き取りサンプリング

最も一般的な表面試験方法は、表面拭き取りサンプリングです。化学物質サン プリング情報(CSI)ファイルには、使用するワイプの種類等、拡張健康基準 で規制されている多くの化学物質に関するワイプサンプリング情報が含まれて います。

多くの場合、対象表面を拭く前に、ワイプを蒸留水又はその他の適切な溶剤に

contaminant from the surface to the wipe. It is best to use a minimum of water/solvent on the wipe so that all of the water/solvent will be picked up by the wipe and not left behind on the sampled surface.

The percent recovery of the contaminant of interest from the sampled surface may vary with the characteristics of the surface sampled (e.g., rough or smooth), the solvent used, and the technique of the person collecting the sample. Consequently, surface wipe sampling may be only semi-quantitative. No OSHA standards currently specify acceptable surface limits. Results of surface wipe sampling are used qualitatively to support alleged violations of housekeeping standards and requirements for cleanliness of PPE. Enforcement guidance is described in more detail in Section VI.

Templates may be used to define a relatively constant surface area for obtaining a wipe sample, but are not always helpful. Templates can only be used on flat surfaces, and they can cause cross-contamination if the template is not thoroughly cleaned between each use. Constructing single-use 10-cm x 10-cm templates is recommended (e.g., using cardstock or file folders). The CSHO may want to sample a much larger surface area than the area covered by a template (e.g., the CSHO may want to determine the cleanliness of a lunch table or other large surface area). In all cases, the CSHO should measure the dimensions of the area being sampled and record this value on the OSHA Information System (OIS) sampling worksheet because the mass amount of chemical measured by the laboratory will be used to determine the mass per unit area for the wipe sample.

す。ワイプに使用する水/溶剤は最小限に抑え、すべての水/溶剤がワイプに吸収され、サンプル採取した表面に残らないようにすることが最善です。

サンプル採取した表面から対象汚染物質を回収する割合は、サンプル採取した表面の特性(例:粗面又は平滑面)、使用する溶剤及びサンプル採取者の技術によって異なる場合があります。したがって、表面拭き取りサンプリングは半定量的な結果しか得られない可能性があります。現在、OSHA基準で許容される表面限度値は規定されていません。表面拭き取りサンプルのサンプリング結果は、清掃基準及び PPE の清浄度要件への違反疑惑を定性的に裏付けるために使用されます。施行ガイダンスについては、セクション VI で詳しく説明します。

テンプレートは、拭き取りサンプルを採取するための比較的一定の表面積を定義するために使用できますが、必ずしも役立つとは限りません。テンプレートは平らな表面にのみ使用でき、使用のたびにテンプレートを完全に洗浄しないと、交差汚染を引き起こす可能性があります。使い捨ての10cm×10cmのテンプレートを作成することをお勧めします(例:厚紙又はファイルフォルダーを使用)。OSHAコンプライアンス安全衛生責任者(CSHO)は、テンプレートで覆われる面積よりもはるかに広い表面積をサンプリングする必要がある場合があります(例:CSHOは、ランチテーブルやその他の広い表面積の清浄度を判断したい場合があります)。いずれの場合も、CSHOはサンプリングする領域の寸法を測定し、この値をOSHA情報システム(OIS)のサンプリングワークシートに記録する必要があります。これは、実験室で測定された化学物質の質量が、拭き取りサンプルの単位面積あたりの質量を決定するために使用されるた

<u>Appendix C</u> provides general procedures for collecting surface wipe samples, including wipe sampling procedures for hexavalent chromium.

Other surface testing techniques include direct-reading swab and wipe tests and vacuum dust collection to collect bulk samples of dust for analysis. Swab and wipe test kits with colorimetric indicators are available for contaminants, including lead, chromate, cadmium, amines, aliphatic and aromatic isocyanates, and others. These nonquantitative assessments can be used to provide an immediate indication in the field of the presence of a contaminant on a surface or the general level of surface contamination. The presence of contamination can be used to provide evidence for housekeeping deficiencies. Lead, chromate and other test swabs are self-contained units with a fiber tip at one end and glass ampoules with reactive materials inside the swab barrel. The swabs are activated by squeezing at the crush points marked on the barrel of the swab, shaking well to mix the reagents, and then squeezing until the reactive liquid comes to the tip of the swab. While squeezing gently, the tip of the swab is rubbed on the surface to be tested for 30 to 60 seconds. The tip of the swab turns color in the presence of the chemical (for example pink to red for lead and pink to purple for chromates). Color development depends on the concentration of chemical present.

Potential limitations associated with swabs include:

• Interferences in color development from chemicals or other materials

めです。

付録 C には、六価クロムの拭き取りサンプル採取手順を含む、表面拭き取りサンプル採取の一般的な手順が記載されています。

その他の表面試験技術には、直接読み取り式のスワブ及び拭き取り試験さらに 分析用に粉じんのバルクサンプルを採取するための真空集じん等があります。 鉛、クロム酸塩、カドミウム、アミン、脂肪族及び芳香族イソシアネート等の 汚染物質については、比色指示薬付きのスワブ及び拭き取り試験キットが利用 可能です。これらの非定量的評価は、現場で表面上の汚染物質の存在又は表面 汚染の一般的なレベルを即座に示すために使用できます。汚染の存在は、清掃 の不備の証拠として使用できます。

鉛、クロム酸塩及びその他の試験用スワブは、片方の端にファイバーチップがあり、スワブの筒の中に反応性物質が入ったガラスアンプルを備えた自己完結型のユニットです。綿棒の軸に刻印された押し込みポイントを押し、試薬をよく振って混ぜ合わせ、反応液が綿棒の先端に来るまで押し込むことで、綿棒を活性化します。優しく押し込みながら、綿棒の先端を検査対象表面に30~60秒間擦り付けます。綿棒の先端は、試薬の存在に応じて変色します(例えば、鉛の場合はピンクから赤、クロム酸塩の場合はピンクから紫)。発色は、含まれる試薬の濃度によって異なります。

綿棒に関連する潜在的な制約としては、以下が挙げられます。

● 存在する可能性のある化学物質やその他の物質による発色への影響(例:

that may be present (e.g., dark colored dust or dirty surfaces obscuring color development on the lead swab tip; rubbing too long or too hard causing a metallic film to collect on the lead swab tip which obscures the color change; bleeding occurring on the lead swab tip when the test surface is painted red; and high concentrations of mercuric chloride or molybdate interfering with the color development of chromate swabs).

- Delayed results (e.g., up to 18 hours for the detection of lead chromate in marine and industrial paints).
- Destruction or damage to the testing surface to assess multiple layers on metal parts or painted surfaces.

Contact the SLTC to discuss wipe sampling before considering use of these methods.

濃い色の埃や汚れた表面が鉛綿棒の先端の発色を不明瞭にする、長時間又は強くこすりすぎると鉛綿棒の先端に金属膜が付着して発色が見えにくくなる、試験面を赤く塗装すると鉛綿棒の先端からにじみが生じる、高濃度の塩化水銀(II)又はモリブデン酸塩がクロム酸綿棒の発色を妨害する等)。

- 結果の遅延(例:船舶用塗料及び工業用塗料中のクロム酸鉛の検出には最大18時間かかる。)。
- ◆ 金属部品又は塗装面の多層構造を評価するために試験面が破損または損傷する。

これらの方法の使用を検討する前に、ソルトレイク・テクニカル・センター (SLTC) に連絡して拭き取りサンプル採取についてご相談ください。

B. Skin Sampling Methods

Skin sampling methods are classified as "interception" and "removal" methods. Interception methods use a "dosimeter" such as a sorbent pad placed on the skin or clothing, which "intercepts" the contaminant before it reaches the skin. After the exposure period ends, the dosimeter is removed, and either extracted in the field to recover and stabilize the analyte of interest, or sealed and sent for laboratory analysis to determine the mass of contaminant

B. 皮膚サンプル採取方法

皮膚からのサンプル採取法は、「遮断法」と「除去法」とに分類されます。遮断 法では、皮膚又は衣服に吸着パッド等の「線量計」を装着し、汚染物質が皮膚 に到達する前に「遮断」します。

ばく露期間終了後、線量計は取り外され、現場で回収・安定化させるか、密封 して実験室に送ってパッドに付着した汚染物質の質量を測定します。場合によっては、汚染物質にばく露されると比色変化を示す直接読み取りパッドが利用 collected on the pad. In some cases, direct reading pads are available which undergo a colorimetric change when exposed to the contaminant of interest.

"Removal" methods remove the contaminant of interest after it has deposited on the skin. Either the skin is rinsed with distilled water or mild washing solution and the rinsate is collected and analyzed for the contaminant of interest, or the skin is wiped with a dry or wetted wipe, and the analyte of interest is then extracted from the wipe. One approach is to place the hands inside a bag that is partially filled with the washing solution, such as distilled water, distilled water with surfactant, or isopropanol diluted with distilled water. The hand is then dipped in the solution and shaken a specified number of times to recover the contaminant from the hand.

Both of these types of methods are generally qualitative in nature. The percent recovery may be variable or not quantitatively established. Further, no OSHA standards currently specify quantitative limits for dermal exposure. Qualitative documentation of the presence of a contaminant on the skin is sufficient to determine whether PPE is inadequate, whether due to inappropriate selection, maintenance, or cleaning.

When considering dermal sampling, consult OSHA's webpages at the following link: <u>Dermal Dosimetry</u>.

1. Direct Reading Patches/Charcoal Felt Pads

In some instances, direct reading patches and/or bandage-type patches can be worn inside a glove to demonstrate directly through a color change that an exposure has occurred. In other instances, charcoal felt patches or bandages

可能です。

「除去法」では、汚染物質が皮膚に付着した後に除去します。皮膚を蒸留水又は中性洗浄液で洗い流し、洗い流し液を採取して汚染物質の有無を分析するか、乾いたワイプ又は濡れたワイプで皮膚を拭き取り、ワイプから汚染物質を抽出します。

一つの方法としては、洗浄液(蒸留水、界面活性剤入り蒸留水、蒸留水で希釈 したイソプロパノール等)を部分的に満たした袋の中に手を入れるという方法 があります。次に、手を洗浄液に浸し、規定回数振ることで、手から汚染物質 を回収します。

これらの方法はどちらも、一般的に定性的な性質を持っています。回収率は変動する場合があり、定量的に確立されていないこともあります。さらに、現在 OSHA 基準では経皮ばく露の定量的な限界値は規定されていません。皮膚に汚染物質が存在することを定性的に記録すれば、PPE が不適切な選択、メンテナンス又は洗浄によるものかどうかを判断するのに十分です。

経皮サンプリングを検討する場合は、OSHA のウェブページ(以下のリンク)を参照してください:経皮線量測定。

1. 直接測定パッチ/チャコールフェルトパッド

場合によっては、直接測定パッチや包帯型パッチを手袋の内側に装着することで、色の変化によってばく露の有無を直接確認できます。また、チャコールフェルトパッチ又は包帯を装着し、実験室で分析することで、揮発性有機化学物

can be worn which can be analyzed by a laboratory to establish the presence of glove permeation by volatile organic chemicals. These charcoal pads may also be used for detection of less volatile organic chemicals. However, poor sample recoveries from a charcoal surface for higher molecular weight substances may result in underestimating the extent of skin exposure for these types of chemicals.

When sampling inside a glove, OSHA recommends that workers being sampled wear disposable gloves inside their normal PPE, with the indicator/charcoal felt pads being placed on the disposable glove surface. Placing the pad on the disposable glove between the skin surface and the regular PPE eliminates any potential skin exposure from the chemicals used in the colorimetric pads, and also reduces any effects that perspiration might have on the sampling pads.

For inside-the-glove sampling, it also is advisable to use a control pad to measure the concentration of airborne volatile chemicals. This control pad should be attached to the worker's clothing while the worker performs his/her normal tasks. The glove sample result would then be corrected for the amount of the organic chemical in the airborne sample to determine the amount of organic chemical actually permeating the protective glove relative to the amount of organic chemical entering the glove opening. This procedure, therefore, would allow the sampler to identify the possible route of glove contamination.

2. Wipe Sampling of Skin

質の手袋への浸透の有無を確認することができます。これらのチャコールパッドは、揮発性の低い有機化学物質の検出にも使用できます。しかし、高分子量物質の場合、活性炭表面からのサンプル回収率が低いと、これらの化学物質の皮膚ばく露量を過小評価する可能性があります。

手袋の内側でサンプルを採取する場合、OSHA は、採取対象となる作業者が通常の PPE の内側に使い捨て手袋を着用し、指示薬/活性炭フェルトパッドを使い捨て手袋の表面に装着することを推奨しています。使い捨て手袋の皮膚表面と通常の PPE の間にパッドを配置することで、比色パッドに使用されている化学物質による皮膚ばく露の可能性を排除し、また、汗が採取パッドに及ぼす影響を軽減します。

手袋の内側でサンプルを採取する場合は、空気中の揮発性化学物質の濃度を測定するためにコントロールパッドを使用することも推奨されます。このコントロールパッドは、作業者が通常の作業を行っている間、作業者の衣服に装着する必要があります。その後、手袋のサンプル結果を空気中のサンプル中の有機化学物質の量で補正し、実際に保護手袋に浸透した有機化学物質の量と、手袋の開口部から侵入した有機化学物質の量との比を算出します。したがって、この手順により、サンプラーは手袋の汚染の可能性のある経路を特定できるようになります。

2. 皮膚拭き取りサンプル採取

Skin wipe samples taken on potentially exposed areas of a worker's body are a useful technique for demonstrating exposure to a recognized hazard. For water-soluble chemicals, a wipe pad moistened with distilled water can be used to wipe the skin. Generally, the best procedure is to allow workers to use the wipe pad to clean their skin surfaces, and then have them insert the wipe pad into a clean container, which is labeled and sealed. Hands, forearms, faces, and possibly feet may be exposed to contaminants that a wipe sample of the skin can be used to establish exposure. Include a blank water sample and use only distilled water, or another source of water approved by the laboratory, for analysis purposes.

作業員の身体の潜在的にばく露する可能性のある部位から採取した皮膚拭き取りサンプルは、既知の危険物質へのばく露を証明するための有用な手法です。水溶性化学物質の場合は、蒸留水で湿らせた拭き取りパッドを使用して皮膚を拭くことができます。一般的に、最良の手順は、作業員に拭き取りパッドを使用して皮膚表面を拭いてもらい、その後、ラベルを貼って密封した清潔な容器に拭き取りパッドを入れてもらうことです。手、前腕、顔そして場合によっては足も汚染物質にばく露されている可能性があるため、皮膚拭き取りサンプルを用いてばく露の有無を判定することができます。分析には、ブランクの水サンプルを含め、蒸留水又は検査機関が承認した他の水源のみを使用してください。

C. Biological Monitoring Methodology

In the event that a CSHO believes biological monitoring would be valuable to assess and evaluate worker exposure to a substance or mixture of substances, he or she should first contact their <u>Regional Office</u>, the SLTC and the <u>Office</u> of <u>Occupational Medicine</u> to determine the most effective approach and technique to obtain the desired result. Biological sampling requires special consideration and will be addressed on a case-by-case basis.

Biological monitoring results can be used to demonstrate significant skin absorption, ingestion or airborne exposures. For instance, when wipe/skin sampling has indicated exposure, a voluntarily obtained worker biological

C. 生物学的モニタリング方法

OSHA コンプライアンス安全衛生責任者 (CSHO) が、労働者の物質又は物質混合物へのばく露を評価・判定するために生物学的モニタリングが有益であると考える場合、まず地域事務所、SLTC 及び産業医学局に連絡を取り、望ましい結果を得るための最も効果的なアプローチと手法を決定する必要があります。生物学的サンプリングには特別な配慮が必要であり、個別に対応されます。

生物学的モニタリングの結果は、重大な皮膚吸収、経口摂取又は空気ばく露を 証明するために使用できます。例えば、拭き取り/皮膚サンプリングでばく露 が示唆された場合、自発的に採取された労働者の生物学的サンプルは、懸念さ sample may prove useful in documenting that skin exposure to the chemical of concern has occurred. Ideally, it is desirable to have samples from a number of workers who are suspected of being exposed. Also, control samples from individuals who do not have skin exposure, or are suspected of much less exposure, are valuable. Note that skin sampling conducted just prior to biological monitoring may result in decreased biological uptake.

1. Carboxyhemoglobin Evaluation

Biological monitoring can also be used to estimate the degree of exposure after an emergency. Table 2 shows the relationship between airborne carbon monoxide (CO) concentrations and steady state carboxyhemoglobin (COHb) levels.

れる化学物質への皮膚ばく露があったことを証明する上で有用となる可能性があります。理想的には、ばく露が疑われる複数の労働者からサンプルを採取することが望ましいです。また、皮膚ばく露がない、又はばく露量が大幅に少ないと疑われる個人からの対照サンプルも有用です。生物学的モニタリングの直前に実施された皮膚サンプリングは、生物学的吸収を減少させる可能性があることに注意してください。

1. 一酸化炭素ヘモグロビン(COHb)の評価

生物学的モニタリングは、緊急事態後のばく露量を推定するためにも使用できます。表 2 は、空気中の一酸化炭素 (CO) 濃度と定常状態の一酸化炭素へモグロビン (COHb) 濃度の関係を示しています。

Table	2.	\mathbf{Carbon}	Monoxide	(CO)	Concentration	Versus	Blood
Carboxyhemoglobin (COHb) Levels*							

表 2. 一酸化炭素 (CO) 濃度と血中一酸化炭素ヘモグロビン (COHb) 濃度の関係*

	Steady-State Blood COHb Levels (percent) 定常血中 COHb 濃度(パーセント)
0.1	0.25

0.5	0.32
1	0.39
2	0.50
5	1.0
10	1.8
15	2.5
20	3.2
40	6.1
60	8.7
80	11
100	14
200	24
400	38
600	48
800	56
1,000	61

*Predicted using the Coburn-Forster-Kane (CFK) model.

Source: ATSDR, 2009

*Coburn-Forster-Kane (CFK) モデルを用いて予測。

出典: ATSDR、2009

1. Post-exposure COHb measurements can be used to back-calculate airborne CO concentrations in order to determine whether a citation is warranted. COHb values provided by a non-OSHA medical professional are submitted to the SLTC for evaluation using a special algorithm online worksheet on the OSHA Intranet. COHb values may be determined either from a blood sample, a breath analyzer, or a Pulse CO-OximeterTM finger measurement. No physical samples are sent to the SLTC, but chain-of-custody must be documented in the OIS.

The SLTC employs a modified, more accurate version of the Coburn-Forster-Kane equation than the closed-form version used in the 1972 NIOSH Criteria Document. The SLTC equation calculates the eight-hour TWA. Poisoning cases generally involve levels above five percent COHb. The calculation also provides an incident-specific sampling and analytical error designed to deal with the uncertainties in the data. The calculation is performed at the SLTC and the results are critically assessed for accuracy by the SLTC staff prior to reporting. The SLTC carbon monoxide experts are available to assist CSHOs

1. ばく露後の一酸化炭素ヘモグロビン(COHb)測定値は、空気中の CO 濃度を逆算し、違反切符発行の要否を判断するために使用できます。OSHA の資格を持たない医療専門家が提供した COHb 値は、OSHA イントラネット上の特別なアルゴリズムオンラインワークシートを用いてソルトレイク・テクニカル・センター(SLTC)に提出され、評価されます。COHb 値は、血液サンプル、呼気分析装置、または Pulse CO-OximeterTM による指先測定のいずれかで測定できます。SLTC には物理的なサンプルは送付されませんが、OIS に保管記録を記載する必要があります。

SLTCは、1972年のNIOSH基準文書で使用された閉形式版のCoburn-Forster-Kane 式よりも精度の高い修正版を採用しています。SLTC 式は 8 時間 TWA (全加重平均)を計算します。中毒事例では通常、一酸化炭素へモグロビン濃度が5%を超えています。この計算では、データの不確実性に対処するために、事例固有のサンプリングおよび分析誤差も考慮されています。計算は SLTC で行われ、結果は報告前に SLTC スタッフによって厳格に正確性が評価されます。

SLTC の一酸化炭素専門家は、OSHA コンプライアンス安全衛生責任者

in acquiring data and in interpreting results.

The following are suggestions to help ensure that the most accurate calculations will be performed.

- Before going on site, download, print and read the Carbon Monoxide Worksheet ("Submitting Data for the Carbon Monoxide Calculation at the OSHA Salt Lake Technical Center (SLTC)") on the OSHA Intranet. Take the worksheet to the site.
- If possible, call one of the SLTC carbon monoxide experts before going to the site, especially if methylene chloride is used.
 The Carbon Monoxide Worksheet lists the SLTC contact persons on the worksheet.
- Collect vital statistics for the victim(s) (age, weight, sex, living or deceased).
- Detail smoking activity (first-hand, second-hand tobacco smoke).
- Document oxygen saturation-affecting conditions such as preand post-exposure activity levels and oxygen therapy.
- Provide accurate timelines (how long the worker was exposed, when the worker was removed, how long resuscitation was performed, the time between removal and when the COHb was taken, etc.).
- List signs and symptoms of suspected exposure.

(CSHO) によるデータ取得と結果の解釈を支援します。 最も正確な計算を行うための提案を以下に示します。

- ・現場に行く前に、OSHA イントラネットから一酸化炭素測定ワークシート (「OSHA ソルトレイク技術センター (SLTC) への一酸化炭素測定用データ提 出」)をダウンロード、印刷し、読んでください。ワークシートを現場に持参し てください。
- ・可能であれば、特に塩化メチレンを使用する場合は、現場に行く前に SLTC の一酸化炭素専門家に連絡してください。一酸化炭素測定ワークシートには、 SLTC の連絡先が記載されています。
- ・被害者の重要な統計情報を収集してください(年齢、体重、性別、生存又は死亡)。
- ・喫煙状況(直接喫煙、間接喫煙)を詳しく記録してください。
- ・ ばく露前後の活動レベルや酸素療法等、酸素飽和度に影響を与える状態を記録します。
- ・正確な経過記録(労働者の曝露時間、労働者の搬送時刻、蘇生措置の実施時間、搬送から一酸化炭素へモグロビン測定までの時間等)を記載します。
- · ばく露が疑われる兆侯と症状を列挙します。

 Review the document for accuracy and completeness before submitting it to the SLTC.

SLTC に提出する前に、文書の正確性と完全性を確認します。

2. Hydrogen Sulfide

For evaluation of suspected hydrogen sulfide (H2S) overexposures, blood thiosulfate monitoring is recommended (Ballerino-Regan and Longmire, 2010). Blood sulfide levels are useful only if obtained within two hours of exposure, and sulfhemoglobin levels are not useful for documenting H2S exposure. Urinary thiosulfate levels are frequently used as a biomarker, however, a quantitative relationship between hydrogen sulfide exposure levels and urinary thiosulfate levels has not been established (ATSDR, 2006). Urine thiosulfate elevation does not occur in the case of rapid fatalities but may be elevated in nonfatally exposed workers. Analysis of COHb may also be useful, since this is a reported metabolite of H2S (NIOSH 2005-110, 2004). For biological monitoring, proper sampling containers and a protocol for handling and shipping samples need to be followed. In general, a qualified laboratory which is experienced in the analysis of biological samples will provide sample vials, shipping containers, and the technical expertise to properly collect, store and ship specimens.

3 Review of Employer Biological Monitoring Results

In instances in which an employer has been conducting biological monitoring, the CSHO shall evaluate the results of such testing. The results may assist in determining whether a significant quantity of the toxic material is being ingested or absorbed through the skin. However, the total body burden is

2. 硫化水素

硫化水素(H2S)の過剰ばく露が疑われる場合の評価には、血中チオ硫酸塩モニタリングが推奨されます(Ballerino-Regan and Longmire, 2010)。血中硫化物 濃度はばく露後 2 時間以内に測定した場合のみ有用であり、スルフヘモグロビン濃度は H2S ばく露の記録には有用ではありません。尿中チオ硫酸塩濃度はバイオマーカーとして頻繁に用いられますが、硫化水素ばく露量と尿中チオ硫酸塩濃度との間の定量的な関係は確立されていません(ATSDR, 2006)。尿中チオ硫酸塩濃度の上昇は、急死例では認められませんが、致命的ではないばく露を受けた労働者では上昇する可能性があります。一酸化炭素ヘモグロビンは H2S の代謝物として報告されているため(NIOSH 2005-110, 2004)、COHb の分析も有用となる可能性があります。

生物学的モニタリングには、適切なサンプリング容器と、サンプルの取り扱い 及び輸送に関するプロトコルに従う必要があります。一般的に、生物学的サン プルの分析経験を持つ認定研究室は、サンプルバイアル、輸送容器、そして適 切な検体の採取、保管及び輸送に関する専門知識を提供します。

3 事業者による生物学的モニタリング結果の審査

事業者が生物学的モニタリングを実施している場合、CSHO (労働安全衛生局) は当該検査結果を評価するものとします。これらの結果は、相当量の有毒物質が経口摂取又は経皮吸収されているかどうかを判断する上で役立つ可能性がある。しかし、体内総負荷量は、あらゆるばく露様式(吸入、経口摂取、吸

composed of all modes of exposure (e.g., inhalation, ingestion, absorption and injection). For the CSHO to assess the results of the biological monitoring, all the data (including any air monitoring results) must be evaluated to determine the source(s) of the exposure and the most likely mode(s) of entry. Results of biological monitoring which have been voluntarily conducted by an employer shall **not** be used as a basis for citations. In fact, OSHA promotes the use of biological monitoring by employers as a useful means for minimizing exposures and for evaluating the effectiveness of control measures.

Citations, in consultation with the <u>Regional Office</u>, would be appropriate when biological monitoring results indicate an unacceptable level of exposure, and the employer is unable to demonstrate that meaningful efforts to reduce or control the exposure(s) were taken.

収、注射等)から構成される。OSHA コンプライアンス安全衛生責任者 (CSHO) が生物学的モニタリング結果を評価するには、すべてのデータ (空気モニタリング結果を含む。)を評価し、ばく露源と最も可能性の高い侵入様式を特定する必要がある。

事業者が自主的に実施した生物学的モニタリング結果は、違反切符発行の根拠として使用してはならない。実際、OSHAは、ばく露を最小限に抑え、管理措置の有効性を評価するための有用な手段として、事業者による生物学的モニタリングの活用を推奨している。

生物学的モニタリング結果が許容できないレベルのばく露を示し、使用がばく露を低減又は制御するための有意義な努力が行われたことを証明できない場合、地域事務所と協議の上、召喚状を発行することが適切となります。

V. Other Analyses

Soil Analysis in Support of the Excavation Standard

Soil analyses at the SLTC is performed to support CSHOs' inspection and compliance responsibilities with respect to trenching and excavation standards such as <u>29 CFR 1926 Subpart P</u>. It also supports citations and legal proceedings. For further information refer to OSHA's <u>Trenching and</u>

V. その他の分析

掘削基準の裏付けとなる土壌分析

SLTC における土壌分析は、29 CFR 1926 Subpart P 等のトレンチ掘削及び掘削基準に関する CSHO の検査及び遵守責任を支援するために実施されます。また、告発や法的手続きのサポートにも役立ちます。詳細については、OSHA のトレンチ掘削および掘削トピックページをご覧ください。

Excavation Topic Page.

A representative soil sample from a trench or excavation is sent to the SLTC for analysis. Soil should be placed in a heavy-duty, tear-resistant plastic bag, secured, and sealed with tape to be airtight. Place the first plastic bag in a second heavy-duty plastic bag for additional protection. Sample size can vary from one pint for very fine-grained samples to two quarts for coarse gravel. A typical sample should be approximately one quart and weigh about three pounds. Do not place any sampling documentation in the bag with the soil. This soil sample is examined and tested according to OSHA Method ID-194. This fully validated method was developed specifically for the OSHA Excavation standard (29 CFR 1926 Subpart P). The required tests take a minimum of four days before results can be provided. The SLTC sample results specify the soil type as well as the textural and structural classification. The soil classification will be Type A, Type B, or Type C, corresponding to the descriptions listed in the Excavation standard (29 CFR 1926 Subpart P, Appendix A). When requested, moisture content can also be provided.

Any questions arising from this analysis can be answered by trained soil experts at the SLTC. This analysis helps CSHOs as well as the inspected establishment personnel understand how to properly protect workers from cave-ins and how to properly evaluate protection measures used to comply with existing regulations.

トレンチ又は掘削現場から採取した代表的な土壌サンプルは、分析のために SLTC に送付されます。土壌は、丈夫で破れにくいビニール袋に入れ、しっかりと固定し、気密性を保つためにテープで密封する必要があります。さらに保護するために、最初のビニール袋を 2 つ目の丈夫なビニール袋に入れます。サンプルのサイズは、非常に細粒のサンプルの場合は 1 パイント(約 480ml)から、粗い砂利の場合は 2 クォート(約 1.8 リットル)まで様々です。標準的なサンプルは約 1 クォート(約 480ml)、重さは約 3 ポンド(約 1.4kg)です。土壌と一緒に袋にサンプル採取に関する文書を入れないでください。

この土壌サンプルは、OSHA メソッド ID-194 に従って検査および試験されます。この完全に検証された方法は、OSHA 掘削基準(29 CFR 1926 Subpart P)のために特別に開発されました。必要な試験は、結果を提供するまでに最低 4日かかります。SLTC サンプルの結果には、土壌の種類及び組織と構造の分類が明記されます。土壌分類は、掘削基準(29 CFR 1926 Subpart P、付録 A)に記載されている説明に基づき、タイプ A、タイプ B 又はタイプ C のいずれかになります。ご要望に応じて、水分含有量も提供可能です。

この分析から生じる疑問は、SLTC の訓練を受けた土壌専門家が回答します。 この分析は、OSHA コンプライアンス安全衛生責任者 (CSHO) と検査対象施 設の職員が、作業員を陥没から適切に保護する方法、および既存の規制を遵守 するために実施されている保護対策を適切に評価する方法を理解するのに役立 ちます。

VI. Enforcement Recommendations

There are currently no surface contamination criteria or quantifications for skin absorption included in OSHA standards. CSHOs should consult OSHA's Field Operations Manual (FOM) for guidance (e.g., see Chapter 4, Section XIV on citing improper personal hygiene practices based on the absorption hazard). The expanded health standards in Subpart Z generally contain housekeeping provisions that address the issue of surface contamination. Exposures to various chemicals are addressed in specific standards for general industry, construction, and shipyard employment. For example:

- <u>Formaldehyde</u>, see 29 CFR 1910.1048 (paragraph (j) contains the housekeeping requirements).
- <u>Methylenedianiline</u>, see 29 CFR 1910.1050 (paragraph (f) provides that regulated areas must be established for areas with dermal exposure potential and paragraph (l) contains housekeeping requirements).
- <u>Acrylonitrile</u>, see 29 CFR 1910.1045 (paragraph (k) provides that surfaces must be kept free of visible liquid acrylonitrile).

The housekeeping provisions are generally the most stringent for the metals, which in solid form may contaminate surfaces and become available for ingestion or inhalation if housekeeping practices are poor. OSHA standards

VI. 執行勧告

現在、OSHA 基準には、表面汚染の基準や皮膚吸収に関する定量化は含まれていません。OSHA コンプライアンス安全衛生責任者(CSHO)は、OSHA の現場作業マニュアル(FOM)のガイダンスを参照する必要があります(例えば、吸収ハザードに基づく不適切な個人衛生習慣の指摘については、第 4 章第 XIV 節を参照)。サブパート Z の拡張された健康基準には、一般的に表面汚染の問題に対処するための清掃(管理)規定が含まれています。様々な化学物質へのばく露については、一般産業、建設業及び造船所における就労に関する具体的な基準で取り上げられています。例えば、以下のとおりです。

- ・ホルムアルデヒドについては、29 CFR 1910.1048 ((j)項に清掃要件が記載されています。) を参照してください。
- ・メチレンジアニリンについては、29 CFR 1910.1050 ((f)項に皮膚曝露の可能性のある区域については規制区域を設けなければならないと規定されており、(l)項に清掃要件が記載されています。)を参照してください。
- ・アクリロニトリルについては、29 CFR 1910.1045 を参照してください (パラグラフ (k) では、表面に目に見える液体のアクリロニトリルが存在しないようにする必要があると規定されています。)。

清掃に関する規定は、一般的に金属類に対して最も厳格です。金属類は固体状態で表面を汚染し、清掃方法が不十分な場合、摂取又は吸入される可能性があります。以下の金属に関する OSHA 基準には、「表面には可能な限り有害金属の

for the following metals contain provisions stating that "surfaces be maintained as free as practicable of accumulations of" the toxic metal and housekeeping requirements such as a prohibition on use of compressed air for cleaning surfaces:

- Arsenic, see 29 CFR 1910.1018 (standard includes strict housekeeping requirements in paragraphs (k) and (m)).
- <u>Lead</u>, see 29 CFR 1910.1025 (standard contains strict housekeeping requirements in paragraphs (h) and (i)).
- <u>Chromium (VI)</u>, see 29 CFR 1910.1026 (standard contains strict housekeeping requirements in paragraphs (i) and (j)).
- <u>Cadmium</u>, see 29 CFR 1910.1027 (standard includes strict housekeeping requirements in paragraphs (j) and (k)).

Useful information on dermal exposure standards can be found at <u>Dermal Exposure - OSHA Standards Safety and Health Topics Page</u>.

Despite the lack of specific criteria or quantitative data for use in the enforcement of elevated exposures to surface and skin chemical hazards in the workplace, it is well established that skin exposure and ingestion of chemicals is a significant mode of occupational exposure. In instances in which a hazard can be established which is not addressed in a specific OSHA standard, the compliance officer may consider a 5(a)(1) General Duty Clause citation to address this concern. Use of the General Duty Clause is discussed in the FOM. In lieu of issuing a 5(a)(1) citation, it is suggested that alternative citations be issued under one or more of the following OSHA standards:

蓄積がないように維持する。」という規定と、表面清掃のための圧縮空気の使用 禁止等の清掃に関する要件が含まれています。

- ・ヒ素については、29 CFR 1910.1018 (同規格の(k)項及び(m)項に厳格な清掃 に関する要件が含まれています。)を参照してください。
- ・鉛については、29 CFR 1910.1025 (同規格の(h)項及び(i)項に厳格な清掃に 関する要件が含まれています)を参照してください。
- ・ 六価クロムについては、29 CFR 1910.1026 (同1基準の(i)項及び(j)項に厳格な清掃に関する要件が含まれています。)を参照してください。
- ・カドミウムについては、29 CFR 1910.1027 を参照してください(この基準には、(j) 項及び (k) 項に厳格な清掃要件が含まれています)。

経皮ばく露基準に関する有用な情報は、「経皮ばく露 - OSHA 基準 安全衛生トピックスページ」に掲載されています。

職場における表面及び皮膚の化学物質ハザードへのばく露増加を強制するための具体的な基準や定量データは存在しないものの、化学物質の皮膚ばく露及び摂取が職業上のばく露の重要な形態であることは十分に確立されています。特定の OSHA 基準で対処されていないハザードが特定された場合、コンプライアンス担当者は、この懸念に対処するために、5(a)(1) 一般義務条項の引用を検討する場合があります。一般義務条項の適用については、FOM で説明されています。

5(a)(1) の違反切符を発行する代わりに、次の OSHA 基準の 1 つ以上に基づいて代替の違反切符を発行することが推奨されます。

- Sanitation, see 29 CFR 1910.141. In instances where a high degree of surface contamination is evident, or clear evidence exists to establish skin exposure of workers to a recognized hazard, then 29 CFR 1910.141(a)(3) can be cited. That is, the CSHO can establish that the employer has failed to keep the workplace "clean to the extent that the nature of the work allows."
- <u>Hazard Communication</u>, see 29 CFR 1910.1200. 29 CFR 1910.1200(h)
 can be cited based upon the evidence collected by the CSHO to
 demonstrate that the employer failed to adequately inform and train
 workers on the hazards present in the workplace.
- Personal Protective Equipment, see 29 CFR 1910, Subpart I. A specific citation may be issued for deficiencies in PPE under 29 CFR 1910.132, which requires that the employer evaluate the hazards, select proper PPE, and train workers on proper use of the PPE.
- Respiratory Protection, see 29 CFR 1910.134. The respiratory protection standard contains specific cleaning provisions in paragraph (h).
- Occupational Exposure to Hazardous Chemicals in Laboratories, see 29 CFR 1910.1450.
- Paragraph (f) contains the hazard communication requirements to adequately inform and train workers on the hazards present in the laboratory.

- 衛生については、29 CFR 1910.141 を参照。表面の高度汚染が明らかな場合又は労働者が既知の危険物質に皮膚ばく露したことを立証する明確な証拠がある場合、29 CFR 1910.141(a)(3) を引用することができる。つまり、OSHA コンプライアンス安全衛生責任者(CSHO) は、使用者が職場を「作業の性質上許される範囲で清潔に」維持しなかったことを立証することができる。
- 危険物質の伝達については、29 CFR 1910.1200 を参照。CSHO が収集した証拠に基づき、使用者が職場に存在する危険物質について労働者に適切な情報提供と訓練を行わなかったことを立証できる場合、29 CFR 1910.1200(h) を引用することができる。
- 個人用保護具については、29 CFR 1910、サブパート I を参照してください。29 CFR 1910.132 に基づき、個人用保護具の不備に対して具体的な違反切符が発行される場合があります。この規定では、使用者は危険性を評価し、適切な個人用保護具を選択し、労働者に個人用保護具の適切な使用方法を訓練することが求められています。
- 呼吸器保護具については、29 CFR 1910.134 を参照してください。呼吸器 保護具基準の(h)項には、具体的な清掃規定が含まれています。
- 実験室における有害化学物質への職業性暴露については、29 CFR 1910.1450 を参照してください。
- (f) 項には、実験室に存在する危険有害性について労働者に適切な情報提供と訓練を行うための危険有害性情報伝達に関する要件が記載されていま

- Paragraph (e)(3) specifies occupational safety and health requirements that must be included in the Chemical Hygiene Plan. It also requires the employer to include the measures that will be taken to ensure the protection of laboratory workers.
- Paragraph (a)(2)(ii) requires that any prohibition of eye or skin contact specified in an expanded health standard be observed.
- Pertinent standards dealing with construction (<u>29 CFR 1926</u>) and shipyard employment (<u>29 CFR 1915</u>).

す。

- (e)(3) 項には、化学衛生計画に含めなければならない労働安全衛生要件が 規定されています。また、使用者は、実験室労働者の保護を確実にするた めに講じる措置も含める必要があります。
- (a)(2)(ii) 項では、拡張された健康基準で規定されている眼又は皮膚への接触の禁止事項を遵守することが求められています。
- 建設業 (29 CFR 1926) 及び造船所の雇用 (29 CFR 1915) に関する関連基 準。

VII. Custom Services Provided by SLTC

The following services are available on a case-by-case basis at the SLTC. Concurrence from the Area Director in an email (or via other means) sent to the SLTC management must be received before the SLTC can commit to providing some of these services.

1. Mass Spectrometry

The mass spectrometry laboratory at the SLTC has a number of unique tools to help CSHOs resolve difficult field sampling and analytical issues. For example, mass spectrometry can be used to identify unknown or suspected organic substances found in industrial processes, indoor air quality complaints, and contaminated water. It can also be used to identify secondary substances that are given off from a heated material (i.e., thermal

VII. SLTC が提供するカスタムサービス

ソルトレイク・テクニカル・センター (SLTC) では、以下のサービスをケースバイケースで提供しています。SLTC がこれらのサービスの一部を提供する前に、エリアディレクターから SLTC 管理者宛てのメール (又はその他の手段) で同意を得る必要があります。

1. 質量分析

SLTC の質量分析ラボには、OSHA コンプライアンス安全衛生責任者 (CSHO) が現場での困難なサンプリングや分析の問題を解決するのに役立つ 独自のツールが多数備わっています。例えば、質量分析は、産業プロセス、室内空気質に関する苦情、汚染水等に含まれる未知又は疑わしい有機物質を特定するために使用できます。また、加熱された物質から発生する二次物質(熱分解生成物等)を特定するためにも使用できます。

decomposition products).

One of the major functions of the mass spectrometry laboratory is identification and confirmation of analytes measured in gas chromatography (GC) analysis performed at the SLTC. The same separation and identification techniques used to confirm the identity of known analytes are also useful to identify an unknown material, investigate possible contamination or batch uniformity in a material from an industrial process, or to check for conformity with a Safety Data Sheet.

Volatile organic chemicals in contaminated water can be quantitated by several different processes, including purge and trap, equilibrium headspace analysis, or a novel approach involving thermal desorption called "Twister." The "Twister" technology is simple to use and highly sensitive.

Thermal Desorption/Gas Chromatography/Mass Spectrometry (TD/GC/MS) is also useful for investigation of low-level or transient odors, and indoor air quality-type complaints. The SLTC can provide sampling tubes containing three resin beds designed to collect a broad range of volatile analytes. The entire collected sample is thermally desorbed into the GC column, providing analysis with maximum sensitivity.

Using a device called a direct insertion probe and a technique called pyrolysis, some thermally labile compounds can be introduced directly into the mass spectrometer source before heat is applied. With another instrument called a PyroprobeTM, materials can be heated to temperatures as high as 1,400° C, with subsequent introduction of decomposition products into the GC column.

質量分析ラボの主要な機能の一つは、SLTC で実施されるガスクロマトグラフィー (GC) 分析で測定された分析対象物質の同定と確認です。既知の分析対象物質の同定に使用される分離・同定技術は、未知の物質の同定、工業プロセスにおける物質の汚染の可能性やバッチ均一性の調査又は安全データシート (SDS) への適合性の確認にも有用です。

汚染水中の揮発性有機化合物(VOC)は、パージ&トラップ法、平衡ヘッドスペース分析法又は「ツイスター」と呼ばれる熱脱着法等、様々な方法で定量できます。「ツイスター」法は操作が簡単で、非常に感度が高い技術です。

熱脱着/ガスクロマトグラフィー/質量分析法(TD/GC/MS)は、低レベル又は一過性の臭気や室内空気質に関する苦情の調査にも有用です。SLTCでは、幅広い揮発性分析対象物質を収集するために設計された3つの樹脂層を備えたサンプリングチューブを提供できます。

収集されたサンプル全体が GC カラムに熱脱着され、最高感度での分析が可能になります。

直接挿入プローブと呼ばれる装置と熱分解と呼ばれる技術を用いることで、熱に不安定な化合物を加熱前に質量分析計の資料挿入口(ソース)に直接導入することができます。また、PyroprobeTMと呼ばれる別の装置を用いることで、物質を最高1,400℃まで加熱し、その後、分解生成物をGCカラムに導入することができます。この方法を用いることで、火災、溶接機やバーナーによる加熱

Products released from materials involved in a fire, heated by a welder or blowtorch, or from any process involving heating can be studied in this way.

2. Materials Analysis

The SLTC provides a variety of services to determine the cause of materials failure. Materials failure analysis examines the extent to which the properties of materials or their use contribute to significant investigations, including fatalities. This procedure often involves collaboration of experts in multiple disciplines including metallurgical engineering, materials science, explosibility, and both organic and inorganic chemistry.

The SLTC has assisted in the investigation of several diverse catastrophes. These investigations have included chemical, gas, and dust explosions and disasters caused by incompatible chemicals and processes; metal and plastic failures; wire, synthetic and natural fiber rope failure; scaffold planking failure; plastic, fiberglass and metal piping failure; radio tower support failure; safety equipment failure; and chain and equipment overloading.

SLTC's services include assistance in searching for industry standards that help support citations, and assistance with finding an accredited laboratory to perform any analysis that is not done at the SLTC. The SLTC tailors the assistance to the particular investigation. The SLTC can either arrange to fully investigate the accident on site, or to review results from an independent laboratory.

3. Sampling for Biological Pathogens

SLTC provides biological (both organism and chemical by-product) sampling | SLTC は、OSHA コンプライアンス安全衛生責任者(CSHO)へのサービスと

又は加熱を伴うあらゆるプロセスから放出される生成物を分析することができ ます。

2. 材料分析

ソルトレイク・テクニカル・センター (SLTC) は、材料破損の原因を特定す るための様々なサービスを提供しています。材料破損分析では、材料の特性や 使用方法が、死亡事故を含む重要な調査にどの程度寄与しているかを検証しま す。この手順では、冶金工学、材料科学、爆発性、有機化学及び無機化学等、 複数の分野の専門家の協力が求められることがよくあります。

ソルトレイク・テクニカル・センター (SLTC) は、様々な大災害の調査を支 援してきました。これらの調査には、不適合な化学物質やプロセスによって引 き起こされた化学爆発、ガス爆発、粉じん爆発、金属及びプラスチックの破 損、ワイヤー、合成繊維及び天然繊維ロープの破損、足場板の破損、プラスチ ック、グラスファイバー、金属配管の破損、無線塔の支持部の破損、安全装置 の破損、チェーン及び機器の過負荷などが含まれます。

SLTC のサービスには、引用を裏付ける業界標準の検索支援や、SLTC で実施 できない分析を実施するための認定試験所の検索支援が含まれます。SLTC は、個々の調査に合わせて支援内容を調整します。

SLTC は、現場で事故を徹底的に調査するか、独立した研究所の結果を検討す るかのいずれかを手配できます。

3. 生物学的病原体のサンプリング

and analysis coordination as a service to CSHOs. The SLTC has developed a standard operating procedure to assure consistent sample handling and analysis. Samples collected and analyzed through this procedure are compliant with the SLTC quality control system and chain-of-custody requirements. SLTC offers contracting services for fungi, bacteria such as Legionella, and endotoxin analysis. Other services can be arranged on a case-by-case basis.

Again, before collecting samples for microbiological analysis, CSHOs are requested to contact the SLTC for sampling requirements, technical support, assessment, and analytical coordination. The SLTC staff will review sampling and analysis plans with CSHOs and make recommendations where appropriate. The purpose of this process is to ensure that prudent sampling is performed.

4. Explosibility Analysis

Because of the complexity of this field, it is strongly recommended that CSHOs contact the SLTC before taking explosibility samples. Doing this allows the explosibility experts to assist CSHOs in taking appropriate samples, and in tailoring the analysis to provide support for the specific inspection.

The SLTC provides an assortment of analytical and technical information services in support of inspections involving potential explosion hazards. Analytical testing is performed in support of OSHA inspections pertaining to hazardous classified locations, grain handling, dust collection systems,

して、生物学的(微生物及び化学副産物の両方)サンプリングと分析の調整を提供しています。SLTC は、一貫したサンプルの取り扱いと分析を確保するための標準操作手順を策定しています。この手順で収集・分析されたサンプルは、SLTC の品質管理システム及び流通管理要件に準拠しています。SLTCは、真菌、レジオネラ等の細菌及びエンドトキシン分析の委託サービスを提供しています。その他のサービスについては、ケースバイケースで手配可能です。

繰り返しになりますが、CSHO は、微生物学的分析のためにサンプルを採取する前に、サンプリング要件、技術サポート、評価及び分析調整について SLTC にご連絡ください。SLTC のスタッフは、CSHO と共にサンプリング及び分析計画を確認し、必要に応じて推奨事項を提示します。このプロセスの目的は、慎重なサンプリングを確実に実施することです。

4. 爆発性分析

この分野は複雑であるため、OSHA コンプライアンス安全衛生責任者 (CSHO) は爆発性サンプルを採取する前に SLTC に連絡することを強くお勧めします。SLTC に連絡することで、爆発性の専門家が CSHO による適切なサンプル採取や、特定の検査に適した分析のカスタマイズを支援できます。

SLTC は、潜在的な爆発の危険性を伴う検査を支援するために、様々な分析及び技術情報サービスを提供しています。分析試験は、危険区域、穀物の取り扱い、集じんシステム、閉鎖空間及び清掃に関する OSHA 検査を支援するために実施されます。訴訟、分析結果(社内試験結果と契約試験機関による試験結果

confined spaces, and housekeeping. Informational support is offered for litigation, interpretation of analytical results (both in-house testing results and results from contract laboratories), and guidance for sampling and standard applicability. Explosibility experts can help investigate industrial incidents involving explosions. This help may include normal explosibility testing, and research into the reactive nature of the materials in question. The SLTC can provide analyses for flash points, energetic reactivity of chemicals, and autoignition temperatures. This testing is useful in support of a wide variety of inspections. Procedures for combustible dust sampling are discussed in detail in Appendix D.

の両方)の解釈、そしてサンプリングと基準の適用に関するガイダンスに関する情報も提供されます。

爆発性の専門家は、爆発を伴う産業事故の調査を支援することができます。この支援には、通常の爆発性試験や、対象となる物質の反応性に関する研究等が含まれる場合があります。

SLTC は、引火点、化学物質のエネルギー反応性及び自然発火温度の分析を提供できます。この試験は、様々な検査の補助として役立ちます。

可燃性粉じんのサンプリング手順については、付録 D で詳しく説明しています。

VIII. References

AIHA, 2004. "Biological Monitoring - A Practical Field Manual". American Industrial Hygiene Association (AIHA) Biological Monitoring Committee, Shane Que Hee, Editor. Fairfax, Virginia: AIHA Press.

ATSDR, 2009. "Draft Toxicological Profile for Carbon Monoxide, September 2009". U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR). Available online at:

//www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=1145&tid=253. Accessed January 25, 2013.

VIII. 参考文献

AIHA, 2004. 「生物学的モニタリング・実用フィールドマニュアル」。アメリカ産業衛生協会(AIHA) 生物学的モニタリング委員会、シェーン・クエ・ヒー編。バージニア州フェアファックス: AIHA 出版。

ATSDR, 2009. 「一酸化炭素の毒性プロファイル草案、2009 年 9 月」。米国保健福祉省公衆衛生局、毒性物質・疾病登録局(ATSDR)。オンラインで入手可能://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=1145&tid=253。2013 年 1 月 25 日アクセス。

BLS, 2012. 「職場の傷害及び疾病 - 2011 年」。米国労働省労働統計局

BLS, 2012. "Workplace Injuries and Illnesses - 2011". Bureau of Labor Statistics, U.S. Department of Labor (DOL) (25 October 2012). Available online at: //www.bls.gov/news.release/pdf/osh.pdf. Accessed January 25, 2013. Boeniger, M.F. and T.D. Klingner, 2002. "In-Use Testing and Interpretation of Chemical-Resistant Glove Performance". Applied Occupational and Environmental Hygiene 17(5): 368-378.

Boeniger, M.F., 2003. Invited Editorial. "The Significance of Skin Exposure". The Annals of Occupational Hygiene 47(8): 591-593.

EPA, 2004. "Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)". Publication No. EPA/540/R/99/005; OSWER 9285.7-02EP; PB99-963312. Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency . Available online at: //cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=183584&inclCol=eco.

Accessed January 25, 2013.

Ignacio J.S. and W.H. Bullock (eds), 2006. "A Strategy for Assessing and Managing Occupational Exposures, Third Edition". Fairfax, Virginia: American Industrial Hygiene Association (AIHA) Press.

Kanerva, L., P. Elsner, J.E. Wahlberg, and H.I. Maibach, 2000. "Handbook of Occupational Dermatology". Berlin Heidelberg: Springer-Verlag.

Klingner, T.D. and M.F. Boeniger, 2002. "A Critique of Assumptions about Selecting Chemical-Resistant Gloves: A Case for Workplace Evaluation of

(DOL)(2012 年 10 月 25 日)。オンラインで入手可能://www.bls.gov/news.release/pdf/osh.pdf。2013年1月25日70セス。

Boeniger, M.F. and T.D. Klingner, 2002. 「耐薬品性手袋の性能に関する使用中試験と解釈」『応用職業環境衛生』17(5): 368-378.

Boeniger, M.F., 2003. 招待論説「皮膚曝露の重要性」『職業衛生年報』 47(8): 591-593.

EPA, 2004. 「スーパーファンドのためのリスク評価ガイダンス 第 I 巻:ヒト健康評価マニュアル (パート E、経皮リスク評価のための補足ガイダンス)」 『EPA/540/R/99/005』発行。 OSWER 9285.7-02EP; PB99-963312. 米国環境保護庁スーパーファンド修復・技術革新局。オンラインで入手可能: //cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=183584&inclCol=eco。 2013年1月25日にアクセス

Ignacio J.S.及び W.H. Bullock 編、2006 年。「職業性曝露の評価と管理のための戦略、第 3 版」。バージニア州フェアファックス:アメリカ産業衛生協会 (AIHA) 出版。

Kanerva, L.、P. Elsner、J.E. Wahlberg、H.I. Maibach 共著、2000 年。「職業性皮膚科学ハンドブック」。ベルリン・ハイデルベルク: Springer-Verlag。

Klingner, T.D.および M.F. Boeniger 共著、2002 年。「耐薬品性手袋の選択に関する前提の批判:職場における手袋の有効性評価の事例」。応用職業環境衛生

Glove Efficacy". Applied Occupational and Environmental Hygiene 17(5): 360-367.

NIOSH 2205-110, 2004. "Specific Medical Tests or Examinations Published in the Literature for OSHA-Regulated Substances". DHHS (NIOSH) Publication No. 2005-110 (December). U.S. National Institute for Occupational Safety and Health. Available online at: //www.cdc.gov/niosh/docs/2005-110/medstart.html. Accessed January 25, 2013.

VanRooij, J.G., M.M. Bodelier-Bade, and F.J. Jongeneelen, 1993 "Estimation of Individual Dermal and Respiratory Uptake of Polycyclic Aromatic Hydrocarbons in 12 Coke Oven Workers." British Journal of Industrial Medicine 50(7): 623-632.

Vermeulen, R., R. Bos, J. Pertijs, and H. Kromhout, 2003. "Exposure Related Mutagens in Urine of Rubber Workers Associated with Inhalable Particulate and Dermal Exposure." Occupational and Environmental Medicine 60(2): 97-103.

17(5): 360-367_o

NIOSH 2205-110, 2004. 「OSHA 規制物質に関する文献に掲載されている特定の医学的検査又は診察」。DHHS(NIOSH)出版物番号 2005-110(12 月)。米国 国 立 労 働 安 全 衛 生 研 究 所 。 オ ン ラ イ ン で 入 手 可 能 : //www.cdc.gov/niosh/docs/2005-110/medstart.html。2013 年 1 月 25 日アクセス。

VanRooij, J.G., M.M. Bodelier-Bade, F.J. Jongeneelen, 1993. 「コークス炉作業員 12 名における多環芳香族炭化水素の経皮および呼吸器系への個別摂取量の推定」。British Journal of Industrial Medicine 50(7): 623-632.

Vermeulen, R., R. Bos, J. Pertijs, H. Kromhout, 2003. 「ゴム労働者の尿中における吸入性粒子および経皮曝露に関連する曝露関連変異原」職業環境医学60(2):97-103.

Appendix A	付録 A
Chemicals Noted for Skin Absorption	皮膚吸収が注目される化学物質
Table A-1. OSHA PELS and ACGIH TLVS With Skin Designations/Notations	表 A-1. OSHA PELS 及び ACGIH TLVS(皮膚の指定/表記付き)

Table A-1. OSHA PELS and ACGIH TLVS With Skin Designations/Notations

表 A-1. OSHA PELS 及び ACGIH TLVS (皮膚の指定/表記付き)

Table A-1. OSHA PELS and ACGIH TLVS With Skin Designations/Notations

		OSHA PELs [See footnote 2]		OSHA PELs [See footnote 2] ACGIH TLV		ACGIH TLVs	LVs [See footnote 3]	
Substance	CAS Number [See footnote	1910	1926/1915	TWA	STEL/C [See footnote 4]			
Acetone cyanohydrin, as CN	75-86-5				C 5 mg/m ³			
Acetonitrile	75-05-8			20 ppm				
Acrolein	107-02-8				C 0.1 ppm			
Acrylamide	79-06-1	0.3 mg/m^3	SAME	0.03 mg/m^3				
Acrylic acid	79-10-7			2 ppm				
Acrylonitrile; see <u>1910.1045</u>	107-13-1			2 ppm				
Adiponitrile	111-69-3			2 ppm				
Aldrin	309-00-2	$0.25~\mathrm{mg/m^3}$	SAME	0.05 mg/m ³				
Allyl alcohol	107-18-6	2 ppm; 5 mg/m ³	SAME	0.5 ppm				

Allyl bromide	106-95-6			0.1 ppm	0.2 ppm
Allyl chloride	107-05-1			1 ppm	2 ppm
4-Aminodiphenyl; see <u>1910.1011</u>	92-67-1			(L)	
Ammonium perfluorooctanoate	3825-26-1			0.01 mg/m ³	
Aniline and homologs	62-53-3	5 ppm; 19 mg/m ³	SAME	2 ppm	
Anisidine (o-, p-isomers)	29191-52-4	0.5 mg/m ³	SAME	0.5 mg/m ³	
ANTU (alpha Naphthylthiourea)	86-88-4			0.3 mg/m ³	
Azinphos-methyl	86-50-0	0.2 mg/m ³	SAME	0.2 mg/m ^{3 (IFV)}	
Benzene; see <u>1910.1028</u> . See <u>Table Z-2</u> for the limits applicable in the operations or sectors excluded in 1910.1028(d)	71-43-2			0.5 ppm	2.5 ppm
Benzidine; See <u>1910.1010</u>	92-87-5			(L)	
Benzotrichloride	98-07-7				C 0.1 ppm
Beryllium and beryllium compounds (as Be)	7440-41-7			0.00005 mg/m ³ I	

Bromoform	75-25-2	0.5 ppm; 5 mg/m ³	SAME	0.5ppm	
2-Butoxyethanol	111-76-2	50 ppm; 240 mg/m ³	SAME	20ppm	
n-Butylamine	109-73-9	(C)5 ppm; (C)15 mg/m ³	SAME		C 5ppm
tert-Butyl chromate (as CrO3); see <u>1910.1026</u>	1189-85-1				C 0.1 mg/m ³
n-Butyl glycidyl ether (BGE)	2426-08-6			3 ppm	
o-sec-Butylphenol	89-72-5			5 ppm	
Captafol	2425-06-1			0.1 mg/m ³	
Carbaryl (Sevin)	63-25-2			$0.5 \text{ mg/m}^{3 \text{ (IFV)}}$	
Carbon disulfide	75-15-0		20 ppm; 60 mg/m ³	1 ppm	
Carbon tetrachloride	56-23-5		10 ppm; 65 mg/m ³	5 ppm 31 mg/m ³	10 ppm
Catechol	120-80-9			5 ppm	
Chlordane	57-74-9	0.5 mg/m ³	SAME	0.5 mg/m ³	

Chlorinated camphene	8001-35-2	0.5 mg/m ³	SAME	0.5 mg/m ³	1 mg/m ³
Chloroacetone	78-95-5				C 1 ppm
Chloroacetyl chloride	79-04-9			0.05 ppm	0.15 ppm
o-Chlorobenzylidene malononitrile	2698-41-1				C 0.05 ppm
Chlorodiphenyl (42% Chlorine) (PCB)	53469-21-9	1 mg/m ³	SAME	1 mg/m ³	
Chlorodiphenyl (54% Chlorine) (PCB)	11097-69-1	0.5 mg/m ³	SAME	0.5 mg/m ³	
1-Chloro-2-propanol	127-00-4			1 ppm	
2-Chloro-1-propanol	78-89-7			1 ppm	
beta-Chloroprene	126-99-8	25 ppm; 90 mg/m ³	SAME	10 ppm	
2-Chloropropionic acid	598-78-7			0.1 ppm	
Chlorpyrifos	2921-88-2			0.1 mg/m ^{3 (IFV)}	
Citral	5392-40-5			5 ppm (IFV)	
Coumaphos	56-72-4			0.05 mg/m ^{3 (IFV)}	
Cresol, all isomers	1319-77-3	5 ppm; 22 mg/m ³	SAME	20 mg/m ^{3 (IFV)}	

Crotonaldehyde	4170-30-3				C 0.3 ppm
Cumene	98-82-8	50 ppm; 245 mg/m ³	SAME	50ppm	
Cyanides (as CN)	(4)	5 mg/m ³	SAME (1915 no skin designation)		
Cyclohexanol	108-93-0			50 ppm	
Cyclohexanone	108-94-1			20 ppm	50 ppm
Cyclonite	121-82-4		1.5 mg/m ³	0.5 mg/m ³	
2,4-D (Dichlorophen-oxyacetic acid)5	94-75-7	10 mg/m ³			
Decaborane	17702-41-9	0.05 ppm; 0.3 mg/m ³	SAME	0.05 ppm	0.15 ppm
Demeton (Systox)	8065-48-3	0.1 mg/m ³	SAME	0.05 mg/m ^{3 (IFV)}	
Demeton-S-methyl	919-86-8			0.05 mg/m ^{3 (IFV)}	
Diazinon	333-41-5			0.01 mg/m ^{3 (IFV)}	
2-N-Dibutylaminoethanol	102-81-8			0.5 ppm	

Dibutyl phenol phosphate	2528-36-1			0.3 ppm	
Dibutyl phosphate	107-66-4			5 mg/m ^{3 (IFV)}	
Dichloroacetic acid	79-43-6			0.5 ppm	
3,3'-Dichlorobenzidine; see <u>1910.1007</u>	91-94-1			(L)	
1,4-Dichloro-2-butene	764-41-0			0.005 ppm	
Dichlorodiphenyltri-chloroethane (DDT)	50-29-3	1 mg/m ³	SAME		
Dichloroethyl ether	111-44-4	(C)15 ppm; (C)90 mg/m ³	SAME	5 ppm	10 ppm
1,3-Dichloropropene	542-75-6			1 ppm	
Dichlorvos (DDVP)	62-73-7	1 mg/m ³	SAME	0.1 mg/m ^{3 (IFV)}	
Dicrotophos	141-66-2			0.05 mg/m ^{3 (IFV)}	
Dieldrin	60-57-1	$0.25~\mathrm{mg/m^3}$	SAME	0.1 mg/m ^{3 (IFV)}	
Diesel fuel, as total hydrocarbons	68334-30-5; 68476-30-2; 68476-31-3; 68476-34-6; 77650-28-3			100 mg/m ^{3(IFV)}	
Diethanolamine	111-42-2			1 mg/m ^{3 (IFV)}	

Diethylamine	109-89-7			5 ppm	15 ppm
2-Diethylaminoethanol	100-37-8	10 ppm; 50 mg/m ³	SAME (1915 no skin designation)	2 ppm	
Diethylene triamine	111-40-0		(C)10 ppm; (C)42 mg/m ³	1 ppm	
Diisopropylamine	108-18-9	5 ppm; 20 mg/m ³	SAME	5 ppm	
Dimethyl acetamide	127-19-5	10 ppm; 35 mg/m ³	SAME	10 ppm	
bis(2-Dimethylaminoethyl)ether (DMAEE)	3033-62-3			0.05 ppm	0.15 ppm
Dimethylaniline (N,N-Dimethylaniline)	121-69-7	5 ppm; 25 mg/m ³	SAME	5 ppm	10 ppm
Dimethyl carbamoyl chloride	79-44-7			0.005 ppm	
Dimethyl-1,2-dibromo-2,2-dichloroethyl phosphate (Naled)	300-76-5			0.1 mg/m ^{3 (IFV)}	
Dimethyl disulfide	624-92-0			0.5 ppm	

Dimethylformamide	68-12-2	10 ppm; 30 mg/m ³	SAME	10 ppm	
1,1-Dimethylhydrazine	57-14-7	0.5 ppm; 1 mg/m ³	SAME	0.01 ppm	
Dimethyl sulfate	77-78-1; 77-78-3	1 ppm; 5 mg/m ³	SAME	0.1 ppm	
Dinitrobenzene (all isomers)	528-29-0; 99-65-0; 100-25-4	1 mg/m ³	SAME	0.15 ppm	
Dinitro-o-cresol	534-52-1	0.2 mg/m ³	SAME	0.2 mg/m ³	
Dinitrotoluene	25321-14-6	1.5 mg/m ³	SAME	0.2 mg/m ³	
Dioxane (Diethylene dioxide)	123-91-1	100 ppm; 360 mg/m ³	SAME	20 ppm	
Dioxathion	78-34-2			$0.1 \text{ mg/m}^{3 \text{ (IFV)}}$	
Dipropylene glycol methyl ether (2- Methoxymethylethoxy)propanol)	34590-94-8	100 ppm; 600 mg/m ³	SAME	100 ppm	150 ppm
Diquat	2764-72-9; 85-00-7; 6385-62- 2			0.5 mg/m ^{3 (I)} ; 0.1 mg/m ^{3 (R)}	
Disulfoton	298-04-4			0.05 mg/m ^{3 (IFV)}	

Endosulfan	115-29-7		0.1 mg/m ³	0.1 mg/m ^{3 (IFV)}	
Endrin	72-20-8	0.1 mg/m ³	SAME	0.1 mg/m ³	
Epichlorohydrin	106-89-8	5 ppm; 19 mg/m ³	SAME	0.5 ppm	
EPN	2104-64-5	0.5 mg/m ³	SAME	0.1 mg/m ^{3 (I)}	
Ethion	563-12-2			0.05 mg/m ^{3 (IFV)}	
2-Ethoxyethanol (Cellosolve)	110-80-5	200 ppm; 740 mg/m ³	SAME	5 ppm	
2-Ethoxyethyl acetate (Cellosolve acetate)	111-15-9	100 ppm; 540 mg/m ³	SAME	5 ppm	
Ethyl acrylate	140-88-5	25 ppm; 100 mg/m ³	SAME	5ppm	15ppm
Ethylamine	75-04-7			5 ppm	15 ppm
Ethyl bromide	74-96-4			5 ppm	
Ethyl chloride	75-00-3			100 ppm	
Ethylene chlorohydrin	107-07-3	5 ppm; 16 mg/m ³	SAME		C 1 ppm

Ethylenediamine	107-15-3			10 ppm	
Ethylene dibromide	106-93-4		(C)25 ppm; (C)190 mg/m ³	_	_
Ethylene glycol dinitrate	628-96-6	(C)0.2 ppm; (C)1 mg/m ³	SAME	0.05 ppm	
Ethyleneimine; see <u>1910.1012</u>	151-56-4			0.05 ppm	0.1 ppm
N-Ethylmorpholine	100-74-3	20 ppm; 94 mg/m ³	SAME	5 ppm	
Fenamiphos	22224-92-6			0.05 mg/m ^{3 (IFV)}	
Fensulfothion	115-90-2			0.01 mg/m ^{3 (IFV)}	
Fenthion	55-38-9			0.05 mg/m ^{3 (IFV)}	
Fonofos	944-22-9			0.1 mg/m ^{3 (IFV)}	
Formamide	75-12-7			10 ppm	
Furfural	98-01-1	5 ppm; 20 mg/m ³	SAME	2 ppm	

Furfuryl alcohol	98-00-0			10 ppm	15 ppm
Heptachlor	76-44-8	$0.5~\mathrm{mg/m^3}$	SAME	0.05 mg/m^3	
Heptachlor epoxide	1024-57-3			0.05 mg/m ³	
Hexachlorobenzene	118-74-1			0.002 mg/m ³	
Hexachlorobutadiene	87-68-3			0.02 ppm	
Hexachloroethane	67-72-1	1 ppm; 10 mg/m ³	SAME	1 ppm	
Hexachloronaphthalene	1335-87-1	0.2 mg/m^3	SAME	0.2 mg/m ³	
Hexafluoroacetone	684-16-2			0.1 ppm	
Hexamethyl phosphoramide	680-31-9			_	
n-Hexane	110-54-3			50 ppm	
2-Hexanone (Methyl n-butyl ketone)	591-78-6			5 ppm	10 ppm
Hydrazine	302-01-2	1 ppm; 1.3 mg/m ³	SAME	0.01 ppm	
Hydrogen cyanide [See footnote 6]	74-90-8	10 ppm; 11 mg/m ³	SAME		C 4.7 ppm
Hydrogen fluoride (as F)	7664-39-3			0.5 ppm	C 2 ppm

2-Hydroxypropryl acrylate	999-61-1			0.5 ppm	
Isooctyl alcohol	26952-21-6			50 ppm	
2-Isopropoxyethanol	109-59-1			25 ppm	
n-Isopropylaniline	768-52-5			2 ppm	
Kerosene/Jet fuels, as total hydrocarbon vapor	8008-20-6; 64742-81-0			200 mg/m ³ P	
Lindane	58-89-9	0.5 mg/m ³	SAME	0.5 mg/m ³	
Malathion Total dust	121-75-5	15 mg/m ³	SAME	1 mg/m³ (IFV)	
Manganese cyclopentadienyl tricarbonyl, as Mn	12079-65-1			0.1 mg/m ³	
Mercury (as Hg)	7439-97-6	0.1mg/m ³	0.1 mg/m ³	0.1 mg/m ³	
Mercury (elemental and inorganic forms)	7439-97-6	0.1mg/m ³	0.1mg/m^3	0.025 mg/m ³	
Mercury (organo) alkyl compounds (as Hg)	7439-97-6	0.01 mg/m 3	0.01 mg/m ³	0.01 mg/m ³	0.03 mg/m ³
Mercury (vapor) (as Hg)	7439-97-6	0.1mg/m ³	0.1 mg/m ³		
2-Methoxyethanol; (Methyl cellosolve)	109-86-4	25 ppm; 80 mg/m ³	SAME	0.1 ppm	
2-Methoxyethyl acetate (Methyl cellosolve acetate)	110-49-6	25 ppm; 120 mg/m ³	SAME	0.1 ppm	

Methyl acrylate	96-33-3	10 ppm; 35 mg/m ³	SAME	2 ppm	
Methylacrylonitrile	126-98-7			1 ppm	
Methyl alcohol	67-56-1			200 ppm	250 ppm
Methyl bromide	74-83-9	(C)20 ppm; (C)80 mg/m ³	SAME	1 ppm	
Methyl chloride	74-87-3			50 ppm	100 ppm
o-Methylcyclohexanone	583-60-8	100 ppm; 460 mg/m ³	SAME	50 ppm	75 ppm
2-Methylcyclopentadienyl manganese tricarbonyl, as Mn	12108-13-3			0.2 mg/m ³	
Methyl demeton	8022-00-2			0.05 mg/m ³ IFV	
4,4'-Methylene bis(2-chloroaniline)	101-14-4			0.01 ppm	
4,4'-Methylene dianiline	101-77-9			0.1 ppm	
Methyl hydrazine (Monomethyl hydrazine)	60-34-4	(C)0.2 ppm; (C)0.35 mg/m ³	SAME	0.01 ppm	

Methyl iodide	74-88-4	5 ppm; 28 mg/m ³	SAME	2 ppm	
Methyl isobutyl carbinol	108-11-2	25 ppm; 100 mg/m ³	SAME	25 ppm	40 ppm
Methyl isocyanate	624-83-9	0.02 ppm; 0.05 mg/m ³	SAME	0.02 ppm	
1-Methyl naphthalene	90-12-0			0.5 ppm	
2-Methyl naphthalene	91-57-6			0.5 ppm	
Methyl parathion	298-00-0			0.02 mg/m ^{3 (IFV)}	
Methyl vinyl ketone	78-94-4				C 0.2 ppm
Monochloroacetic acid	79-11-8			0.5 ppm (IFV)	
Monocrotophos	6923-22-4			0.05 mg/m ^{3 (IFV)}	
Monomethyl aniline (N-Methyl aniline)	100-61-8	2 ppm; 9 mg/m ³	SAME	0.5 ppm 2.2 mg/m ³	
Morpholine	110-91-8	20 ppm; 70 mg/m ³	SAME	20 ppm	

Naphthalene [See footnote 7]	91-20-3			10 ppm	15 ppm
Natural rubber latex, as inhalable allergenic proteins	9006-04-6			0.0001 mg/m ³	
Nicotine	54-11-5	0.5 mg/m ³	SAME	0.5 mg/m ³	
p-Nitroaniline	100-01-6	1 ppm; 6 mg/m ³	SAME	3 mg/m ³	
Nitrobenzene	98-95-3	1 ppm; 5 mg/m ³	SAME	1 ppm	
p-Nitrochlorobenzene	100-00-5	1 mg/m ³	SAME	0.1 ppm	
4-Nitrodiphenyl; see <u>1910.1003</u>	92-93-3			(L)	
Nitroglycerin	55-63-0	(C)0.2 ppm; (C)2 mg/m ³	SAME	0.05 ppm	
N-Nitrosodimethylamine; see <u>1910.1016</u>	62-75-9			(L)	
Nitrotoluene (all isomers)	88-72-2; 99-08-1; 99-99-0	5 ppm; 30 mg/m ³	SAME	2 ppm	
Octachloronaphthalene	2234-13-1	0.1 mg/m ³	SAME	0.1 mg/m ³	0.3 mg/m ³
Paraquat, respirable dust	4685-14-7; 1910-42-5; 2074- 50-2	0.5 mg/m ³ 0.1 mg/m ^{3 (R)}	SAME		

Parathion	56-38-2	0.1 mg/m ³	SAME (1915 no skin designation)	0.05 mg/m ^{3 (IFV)}
Pentachloronaphthalene	1321-64-8	0.5 mg/m ³	SAME	0.5 mg/m ³
Pentachlorophenol	87-86-5	0.5 mg/m ³	SAME	0.5 mg/m ³
2,4-Pentanedione	123-54-6			25 ppm
Phenol	108-95-2	5 ppm; 19 mg/m ³	SAME	5 ppm
Phenothiazine	92-84-2			5 mg/m ³
p-Phenylene diamine	106-50-3	0.1 mg/m ³	SAME	0.1 mg/m ³
Phenyl glycidyl ether (PGE)	122-60-1			0.1 ppm
Phenylhydrazine	100-63-0	5 ppm; 22 mg/m ³	SAME	0.1 ppm
Phenyl mercaptan	108-98-5			0.1 ppm
Phorate	298-02-2			0.05 mg/m ^{3 (IFV)}
Phosdrin (Mevinphos)	7786-34-7	0.1 mg/m ³	SAME	0.01 mg/m ^{3 (IFV)}

Picric acid	88-89-1	0.1 mg/m ³	SAME (1915 no skin designation)	0.1mg/m ³	
Propargyl alcohol	107-19-7		1 ppm	1 ppm	
Propylene glycol dinitrate	6423-43-4			0.05 ppm	
Propylene imine	75-55-8	2 ppm; 5 mg/m ³	SAME	0.2 ppm	0.4 ppm
Sodium fluoroacetate	62-74-8	0.05 mg/m ³	SAME	0.05 mg/m ³	
Sulprofos	35400-43-2			0.1 mg/m ^{3 (IFV)}	
TEDP (Sulfotepp)	3689-24-5	0.2 mg/m ³	SAME	0.1 mg/m ^{3 (IFV)}	
Temephos	3383-96-8			1 mg/m ^{3 (IFV)}	
TEPP (Tetraethyl pyrophosphaate)	107-49-3	0.05 mg/m ³	SAME	0.01 mg/m ^{3 (IFV)}	
Terbufos	13071-79-9			0.01 mg/m ^{3 (IFV)}	
1,1,2,2-Tetrachloro-ethane	79-34-5	5 ppm; 35 mg/m ³	SAME	1 ppm	
Tetrachloronaphthalene	1335-88-2	2 mg/m ³	SAME	2 mg/m ³	

Tetraethyl lead (as Pb)	78-00-2	0.075 mg/m ³	0.1 mg/m ³	0.1 mg/m ³	
Tetrahydrofuran	109-99-9			50 ppm	100 ppm
Tetramethyl lead (as Pb)	75-74-1	0.075 mg/m ³	0.15 mg/m ³	0.15 mg/m ³	
Tetramethyl succinonitrile	3333-52-6	0.5 ppm; 3 mg/m ³	SAME	0.5 ppm	
Tetryl (2,4,6-Trinitro-phenylmethyl-nitramine)	479-45-8	1.5 mg/m ³	SAME	1.5 mg/m 3	
Thallium, soluble compounds (as Tl)	7440-28-0	0.1 mg/m ³	SAME	$0.02~{ m mg/m^3}$ $^{ m (I)}$	
Thioglycolic acid	68-11-1			1 ppm	
Tin, organic compounds (as Sn)	7440-31-5			0.1 mg/m ³	0.2 mg/m ³
o-Tolidine	119-93-7			_	
Toluene-2,4-diisocyanate (TDI) [See footnote 8]	584-84-9	(C)0.02 ppm; (C)0.14 mg/m ³		0.005 ppm	0.02ppm
o-Toluidine	95-53-4	5 ppm; 22 mg/m ³	SAME	2 ppm	
m-Toluidine	108-44-1			2 ppm	
p-Toluidine	106-49-0			2 ppm	

1,1,2-Trichloroethane	79-00-5	10 ppm; 45 mg/m ³	SAME	10 ppm	
Trichloronaphthalene	1321-65-9	5 mg/m ³	SAME	5 mg/m ³	
1,2,3-Trichloropropane [See footnote 9]	96-18-4			10 ppm	
Triethylamine	121-44-8			1 ppm	3 ppm
Trimellitic anhydride	552-30-7			0.0005 mg/m^3 IFV	0.002 mg/m ³ IFV
2,4,6-Trinitrotoluene (TNT)	118-96-7	1.5 mg/m ³	SAME	0.1 mg/m ³	
Triorthocresyl phosphate	78-30-8			0.1 mg/m ³	
Vinyl cyclohexene dioxide	106-87-6			0.1 ppm	
m-Xylene α , α '-diamine	1477-55-0				C 0.1 mg/m ³
Xylidine	3-8	5 ppm; 25 mg/m ³	SAME	0.5 ppm (IFV)	

¹ The chemical abstracts service (CAS) number is for information only. For an entry covering more than one metal compound measured as the metal, the CAS number for the metal is given - not CAS numbers for the individual compounds.

² The OSHA PELs provided under "1910" refer to General Industry, 29 CFR 1910.1000 Table Z-1; "1926" refers to Construction, 29 CFR 1926.55, Appendix A; and "1915" refers to Shipyards, 29 CFR 1915.1000. The PELs are 8-hour time-weighted average (TWA) concentrations unless otherwise noted; a (C)

designation denotes a ceiling limit. They are to be determined from breathing-zone air samples. If an entry is only listed in mg/m³, the value is exact; when listed with a ppm entry, it is approximate. "SAME" indicates the value for 1926 and 1915 is equal to that listed for 1910 unless otherwise noted.

- ³ The ACGIH TLVs are from the ACGIH publication 2012 TLVs® and BEIs® Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. "TWA" refers to 8-hour, TWA concentrations; "STEL" refers to "short-term exposure limit," a 15-minute TWA concentration; "C" indicates ceiling limit; a concentration that should not be exceeded during any part of the working exposure; "I" indicates inhalable fraction (particle aerodynamic diameter ranging from 0 to 100 micrometers; "IFV" indicates inhalable fraction and vapor; "(L)" indicates exposures by all routes should be carefully controlled to levels as low as possible; "P" indicates application restricted to conditions in which there are negligible aerosol exposures; and "R" indicates respirable fraction (particle aerodynamic diameter ranging from 0 to 10 micrometers).
- ⁴ Values in this column are STEL values unless noted as ceiling limits with a "C" preceding the value.
- ⁵ See ACGIH 2012 NIC—proposed change to 10 mg/m³ I (TWA) with skin designation.
- ⁶ ACGIH separates this listing into "hydrogen cyanide" and "cyanide salts," while OSHA does not differentiate between the two. Only the hydrogen cyanide TLV is listed here.
- $^7\,\mathrm{See}\,\mathrm{ACGIH}$ 2012 NIC—proposed change to 5 ppm (TWA) with skin designation, no STEL.
- ⁸ See ACGIH 2012 NIC—proposed change to 0.001 ppm IFV (TWA), 0.003 ppm IFV (STEL), skin designation.
- ⁹ See ACGIH 2012 NIC—proposed change to 0.05 ppm (TWA), removal of skin designation.0