

(タイトルページ)

本稿は、アメリカ合衆国労働省職業安全衛生局 (Occupational Safety and Health Administration:略称 US-OSHA)が、その関連するウェブサイトで公開している、シリコン Semiconductors (半導体)に関する解説記事の全文について、「英語原文—日本語仮訳」の形式で別記 1 として紹介するものです。その内容としては、全体の概要、OSHA の基準、半導体製造における OSHA の安全対策の概要、半導体製造工程における潜在的な危険有害性及び可能な解決策等を含んでいます。

本稿の英語原文には Table1~6 (ただし、原典には Table5 は見当たりません。) が含まれていますので、これらの表 1~4 及び 6 (表 5 については原典には見当たりません。) の対訳については、別記 2 として表示してあります。

なお、ガリュウムヒ素半導体については、本稿とは別の解説記事がありますので、別途紹介することとしています。

○本稿の作成年月： 2026 年 1 月

○本稿の作成者 中央労働災害防止協会技術支援部国際課

事項	英語原文	左欄の日本語仮訳
原典の名称	US-OSHA の Semiconductors に関する解説記事	アメリカ合衆国労働省職業安全衛生局における (シリコン) 半導体に関する解説記事
原典の所在	https://www.osha.gov/semiconductors	—
発行者	US-OSHA	アメリカ合衆国労働省職業安全衛生局
著作権について	Freedom of Information Act (情報の自由法) によって、自由に利用で	—

	きます	
--	-----	--

<h2>Overview</h2>	<h2>概要</h2>
<h3>Highlights</h3> <ul style="list-style-type: none"> Fact Sheet: Safety in Semiconductor Manufacturing. An OSHA Fact Sheet Publication (2024). Silicon Device Manufacturing. OSHA reviews the processes, potential hazards, and possible solutions involved in silicon device manufacturing. Gallium Arsenide Device Manufacturing. OSHA reviews the processes, potential hazards, and possible solutions involved in gallium arsenide device manufacturing. <p>In the past 70 years, the semiconductors industry has expanded greatly. Due to rapid changes in this industry, manufacturing processes and their associated hazards may change completely every few years. These changes make hazard assessments more difficult to complete and require that they be conducted more often. Common hazards may include exposure to solvents, acid and caustic solutions, toxic metals, and radiation.</p>	<h3>主な内容</h3> <ul style="list-style-type: none"> ファクトシート：半導体製造における安全対策 OSHA ファクトシート刊行物 (2024 年) シリコンデバイス製造。OSHA がシリコンデバイス製造における工程、潜在的な危険有害性及び可能な解決策を検証 ガリウムヒ素デバイス製造。OSHA がガリウムヒ素デバイス製造における工程、潜在的な危険性及び可能な解決策を検証 <p>過去 70 年間で、半導体産業は大きく拡大した。この産業の急速な変化により、製造プロセスとそれに伴う危険性は数年ごとに完全に変わる可能性がある。こうした変化により、危険性の評価はより困難になり、より頻繁に実施する必要が生じている。一般的な危険性には、溶剤、酸及びアルカリ溶液並びに有毒金属、放射線へのばく露等が含まれる。</p>

<p>Standards</p> <p>Semiconductor hazards are addressed in specific OSHA standards for general industry. This section highlights OSHA standards and documents related to semiconductors.</p> <p>OSHA Standards</p> <p>Frequently Cited Standards</p> <p>OSHA maintains a listing of the most frequently cited standards for specified 6-digit North American Industry Classification System (NAICS) codes. Please refer to OSHA's Frequently Cited OSHA Standards page for additional information. For <i>Semiconductor and Related Device Manufacturing</i> use NAICS code 334413 in the NAICS search box.</p>	<p>基準</p> <p>半導体関連の危険性は、一般産業向けの特定の OSHA 基準で規定されています。本節では、半導体に関する OSHA 基準及び文書を重点的に紹介します。</p> <p>OSHA 基準</p> <p>頻繁に引用される基準</p> <p>OSHA は、特定の 6 桁北米産業分類システム (NAICS) コードに対して最も頻繁に引用される基準の一覧を維持しています。詳細については、OSHA の「頻繁に引用される OSHA 基準」ページを参照してください。半導体及び関連デバイス製造については、NAICS 検索ボックスで NAICS コード 334413 を使用してください。</p>
--	--

<p>Other Highlighted Standards</p>	<p>その他の重点基準</p>
<p>General Industry (29 CFR 1910)</p>	<p>一般産業 (29 CFR 1910)</p>

General Industry (29 CFR 1910) (一般産業基準)		Related Information 【関連する情報】 (資料作成者注：以下の青字のアンダーライン部分をクリックすれば、関連する原典の英語原文にアクセスできます。)
<u>1910 Subpart H</u> - Hazardous Materials (1910 サブパート H - 危険物)	<u>1910.124</u> , General requirements for dipping and coating operations. (1910.124、浸漬及びコーティング作業の一般要件)	Related Information
<u>1910 Subpart I</u> - Personal Protective Equipment (1910 サブパート I - 個人用保護具)	<u>1910.132</u> , General requirements. (910.132、一般要求事項)	Related Information
	<u>1910.134</u> , Respiratory protection. (1910.134、呼吸用保護具)	Related Information
<u>1910 Subpart Z</u> - Toxic and Hazardous Substances	<u>1910.1018</u> , Inorganic arsenic.	Related Information

General Industry (29 CFR 1910) (一般産業基準)		Related Information 【関連する情報】
(1910 サブパート Z - 有毒及び有害物質)	1910.1020, Access to employee exposure and medical records.	Related Information
	1910.1025, Lead. (1910.1025, 鉛)	Related Information

State Plan Standards	州計画基準
<p>There are 29 OSHA-approved State Plans operating state-wide occupational safety and health programs. State Plans are required to have standards and enforcement programs that are at least as effective as Federal OSHA and may have different or more stringent requirements.</p> <p>Note: These are NOT OSHA regulations. However, they do provide guidance from their originating organizations related to worker protection.</p> <p><i>Semiconductor Equipment and Materials International (SEMI)</i></p>	<p>全米で 29 の OSHA 承認州計画が州全体の労働安全衛生プログラムを運営している。州計画は、連邦 OSHA と同等以上の効果を持つ基準と執行プログラムを有することが義務付けられており、異なる、又はより厳しい要件を設けることも可能である。</p> <p>注：これらは OSHA の規制ではありません。ただし、労働者保護に関する、これらの指針を策定した組織からのガイダンスを提供しています。</p> <p><i>半導体製造装置・材料国際協会 (SEMI)</i></p>
<i>Safety Guidelines</i>	安全ガイドライン

<ul style="list-style-type: none"> ◦ SEMI S1-0708E Safety Guideline for Equipment Safety Labels ◦ SEMI S2-0712b Environmental, Health, and Safety Guideline for Semiconductor Manufacturing Equipment ◦ SEMI S3-1211 Safety Guideline for Process Liquid Heating Systems ◦ SEMI S4-0304 Safety Guideline for the Separation of Chemical Cylinders Contained in Dispensing Cabinets ◦ SEMI S5-0310 Safety Guideline for Sizing and Identifying Flow Limiting Devices for Gas Cylinder Valves ◦ SEMI S6-0707E EHS Guideline for Exhaust Ventilation of Semiconductor Manufacturing Equipment ◦ SEMI S7-0310 Safety Guideline for Evaluating Personnel and Evaluating Company Qualifications ◦ SEMI S8-0712a Safety Guidelines for Ergonomics Engineering of Semiconductor Manufacturing Equipment ◦ SEMI S10-0307E Safety Guideline for Risk Assessment and Risk Evaluation Process ◦ SEMI S12-0211 Environmental, Health and Safety Guideline for Manufacturing Equipment Decontamination ◦ SEMI S13-0113 Environmental, Health and Safety Guideline for Documents Provided to the Equipment User... ◦ SEMI S14-0309 Safety Guidelines for Fire Risk Assessment and 	<ul style="list-style-type: none"> ◦ SEMI S1-0708E 装置安全ラベルに関する安全ガイドライン ◦ SEMI S2-0712b 半導体製造装置の環境・健康・安全に関するガイドライン ◦ SEMI S3-1211 プロセス液加熱システムに関する安全ガイドライン ◦ SEMI S4-0304 ディスペンシングキャビネット内化学薬品シリンダー分離に関する安全ガイドライン ◦ SEMI S5-0310 ガスシリンダーバルブ用流量制限装置の選定及び識別に関する安全ガイドライン ◦ SEMI S6-0707E 半導体製造装置排気換気に関する EHS ガイドライン ◦ SEMI S7-0310 従業員評価及び企業資格評価に関する安全ガイドライン ◦ SEMI S8-0712a 半導体製造装置の人間工学設計に関する安全ガイドライン ◦ SEMI S10-0307E リスク評価及びリスク評価プロセスに関する安全ガイドライン ◦ SEMI S12-0211 製造装置除染に関する環境・健康・安全ガイドライン ◦ SEMI S13-0113 装置ユーザーに提供される文書に関する環境・健康・安全ガイドライン... ◦ SEMI S14-0309 半導体製造装置の火災リスク評価及び軽減に関する安全ガ
--	---

Mitigation for Semiconductor Manufacturing Equipment	イドライン
<p><i>Facilities</i></p> <ul style="list-style-type: none"> ◦ <i>SEMI F1-0812 Specification for Leak Integrity of High-Purity Gas Piping Systems and Components</i> ◦ <i>SEMI F4-0211 Specification for Pneumatically Actuated Cylinder Valves</i> ◦ <i>SEMI F5-1101 Guide for Gaseous Effluent Handling</i> ◦ <i>SEMI F6-92 Guide for Secondary Containment of Hazardous Gas Piping Systems</i> ◦ <i>SEMI E16-0611 Guideline for Determining and Describing Mass Flow Controller Leak Rates</i> ◦ <i>SEMI E17-1011 Guide for Mass Flow Controller Transient Characteristics Tests</i> ◦ <i>SEMI E51-0200 Guide for Typical Facilities Services and Termination Matrix</i> ◦ <i>SEMI E129-0912 Guide to Assess and Control Electrostatic Charge in a Semiconductor Manufacturing Facility</i> 	<p>施設</p> <ul style="list-style-type: none"> ◦ SEMI F1-0812 高純度ガス配管システム及び部品の漏れ完全性に関する仕様 ◦ SEMI F4-0211 空気圧作動シリンダーバルブに関する仕様 ◦ SEMI F5-1101 ガス状排出物処理ガイド ◦ SEMI F6-92 有害ガス配管システム二次遮蔽ガイド ◦ SEMI E16-0611 マスフローコントローラ漏洩率の測定及び記述に関するガイドライン ◦ SEMI E17-1011 マスフローコントローラ過渡特性試験ガイド ◦ SEMI E51-0200 標準施設サービス及び終了マトリクスガイド ◦ SEMI E129-0912 半導体製造施設における静電気評価・管理ガイド
<p><i>Facilities</i></p> <ul style="list-style-type: none"> ◦ <i>SEMI F1-0812 Specification for Leak Integrity of High-Purity Gas Piping Systems and Components</i> ◦ <i>SEMI F4-0211 Specification for Pneumatically Actuated Cylinder Valves</i> 	<p>施設</p> <ul style="list-style-type: none"> ◦ SEMI F1-0812 高純度ガス配管システム及び部品の漏れ完全性に関する仕様 ◦ SEMI F4-0211 空気作動式シリンダーバルブに関する仕様

<p>Valves</p> <ul style="list-style-type: none"> ○ SEMI F5-1101 Guide for Gaseous Effluent Handling ○ SEMI F6-92 Guide for Secondary Containment of Hazardous Gas Piping Systems ○ SEMI E16-0611 Guideline for Determining and Describing Mass Flow Controller Leak Rates ○ SEMI E17-1011 Guide for Mass Flow Controller Transient Characteristics Tests ○ SEMI E51-0200 Guide for Typical Facilities Services and Termination Matrix ○ SEMI E129-0912 Guide to Assess and Control Electrostatic Charge in a Semiconductor Manufacturing Facility 	<ul style="list-style-type: none"> ○ SEMI F5-1101 ガス状排出物処理に関するガイド ○ SEMI F6-92 危険ガス配管システム二次遮蔽ガイド ○ SEMI E16-0611 マスフローコントローラ漏洩率測定・記述ガイドライン ○ SEMI E17-1011 マスフローコントローラ過渡特性試験ガイド ○ SEMI E51-0200 標準施設サービス及び終端マトリクスガイド ○ SEMI E129-0912 半導体製造施設における静電気評価・管理ガイド
---	--

<p>Hazards and Solutions</p> <p>Many high-technology workers in the semiconductor industry risk exposure to a variety of hazardous substances and operations. The following references aid in recognizing and controlling hazards in the workplace.</p>	<p>危険有害要因及び対策</p> <p>半導体産業における多くのハイテク労働者は、様々な有害物質や作業へのばく露リスクに直面しています。以下の参考文献は、職場における危険有害要因の認識と管理に役立ちます。</p>
<p>Silicon Device Manufacturing</p> <ul style="list-style-type: none"> ▪ Silicon Device Manufacturing. OSHA reviews the processes, potential hazards, and possible solutions involved in silicon device manufacturing. 	<p>シリコンデバイス製造</p> <ul style="list-style-type: none"> ● シリコンデバイス製造。OSHA は、シリコンデバイス製造に関連するプロセス、潜在的な危険及び可能な解決策を検討します。 (資料作成者注：Silicon Device Manufacturing. の英語原文及び対訳につ

	いては別記1を参照されたい。)
Gallium Arsenide Device Manufacturing	<p>ガリウムヒ素デバイスの製造</p> <ul style="list-style-type: none"> ● Gallium Arsenide Device Manufacturing. OSHA reviews the processes, potential hazards, and possible solutions involved in gallium arsenide device manufacturing. <p>(資料作成者注：Gallium Arsenide Device Manufacturing の英語原文及び対訳については別に作成してあります。)</p>
Semiconductor Industry	<p>半導体産業</p> <ul style="list-style-type: none"> ● Williams ME、Baldwin DG. <i>Semiconductor industrial hygiene handbook</i>. Park Ridge (NY): Noyes Publications; 1995. ● <i>Hazardous materials toxicology: clinical principles of environmental health</i>. Sullivan JB Jr, Krieger GR, eds. Baltimore (MD): Williams & Wilkins; 1992 Jan. 1242 p. <ul style="list-style-type: none"> ○ Harrison M. <i>Semiconductor manufacturing hazards</i>. <p>ハリソン M. 半導体製造の危険性</p>

Additional Resources	追加の情報源（リソース）
Related Safety and Health Topics Pages	<p>関連する安全衛生トピックのページ</p> <p>(資料作成者注：左欄の英語原文のアンダーライン部分をクリックすれば原典の英語原文にアクセスできます。)</p>

- [Arsenic](#)
- [Control of Hazardous Energy \(Lockout/Tagout\)](#)
- [Dermal Exposure](#)
- [Ionizing Radiation](#)
- [Machine Guarding](#)
- [Non-Ionizing Radiation](#)
- [Personal Protective Equipment \(PPE\)](#)
- [Process Safety Management](#)
- [Respiratory Protection](#)
- [Sampling and Analysis](#)
- [Solvents](#)
- [Ventilation](#)

Other Resources

- [Semiconductor Manufacturing](#). National Institute for Occupational Safety and Health (NIOSH) Workplace Safety and Health Topic.
- [Occupational Health Guidelines for Chemical Hazards](#). U.S. Department of Health and Human Services (DHHS), National Institute for

- ヒ素
- 危険エネルギーの管理（ロックアウト／タグアウト）
- 皮膚ばく露
-
- 電離放射線
- 機械防護
- 非電離放射線
- 個人用保護具（PPE）
- プロセス安全管理
- 呼吸用保護具
- サンプリングと分析
- 溶剤
- 換気

その他の情報源（リソース）

- 半導体製造。国立労働安全衛生研究所（NIOSH）職場安全衛生トピック
- 化学物質危険性に関する職業衛生ガイドライン。米国保健社会福祉省（DHHS）、国立労働安全衛生研究所（NIOSH）刊行物番号 81-123 (1981)

Occupational Safety and Health (NIOSH) Publication No. 81-123, (January 1981). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures.

Trade Associations

- *Semiconductor Environmental, Safety & Health Association (SESHA)*. Promotes safety and health in the semiconductor industry.
- *Semiconductor Industry Association (SIA)*. Represents the computer chip industry.
- *Semiconductor Equipment and Materials International (SEMI)*. Serves the semiconductor and flat panel display industries.

年1月)。多くの有害化学物質に関するガイドラインの目次を提供。各ファイルには、化学的・物理的特性、健康影響、ばく露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。

業界団体

- 半導体環境安全衛生協会 (SESHA)。半導体産業における安全と健康を推進
- 半導体産業協会 (SIA)。コンピュータチップ産業を代表する。
- 国際半導体製造装置・材料協会 (SEMI)。半導体及びフラットパネルディスプレイ産業にサービスを提供

<u>Silicon Device Manufacturing</u>	シリコンデバイス製造
Processes and Related Hazards	<p>プロセス及び関連する危険性</p> <p>半導体製造には主に 4 つの工程が含まれます：(1) 基板製造、(2) デバイス製造、(3) メタライゼーション、(4) 非製造プロセス。</p> <p>以下のリンクでは、各工程における様々なプロセス、関連する危険性及び管理策に関する追加情報を提供しています。必要に応じて、OSHA 安全衛生トピックウェブサイト内の様々なトピックへの追加リンクも提供されています。本ページの情報は一般的なものであり、実際のプロセスは各生産施設によって異なります。完全な危険要因リストは、対象となる実際のプロセスに対する危険性分析に基づいて作成する必要があります。</p>
Substrate Manufacture	基板製造
<u>Polycrystalline Silicon Production</u>	<p>多結晶シリコンの製造</p> <p>多結晶シリコンを製造するには、原料である石英岩（珪砂）から超高純度シリコンを生成する。石英岩を溶融し、1900°C以上の電気アーク炉で還元してシリコンとする。この冶金級シリコンを炉から引き出し、酸素又は酸素と塩素との混合ガスを吹き付けて不純物レベルを低減し、約 99%の純度を達成する。次に、銅含有触媒の存在下で、このシリコンを塩化水素ガスと反応させてトリクロロシラン (SiHCl_3) を生成する。トリクロロシランは高温（約 1100°C）で水素と反応させることで、極めて純度の高いシリコンに還元される。この「電子グレード」シリコンの不純物含有量は 1ppb 未満である。</p>

The following are the potential hazards of polycrystalline silicon production.

- [Silica \(Crystalline\)](#)
- [Hydrogen Chloride Gas](#)
- [Flammable Gases, Fire](#)
- [Solvents](#)

Silica (Crystalline)

Potential Hazard

- Possible employee exposure to crystalline silica used as a raw material. Inhalation of silica can lead to chronic, accelerated or acute silicosis and is associated with bronchitis and tuberculosis. Some studies also indicate an association with lung cancer. Exposures to silicon dust may also occur; controls are similar to those used for crystalline silica.

Possible Solutions

- Identify silica hazards and perform appropriate exposure evaluations.
 - Identify and evaluate all potential exposure scenarios, for example: startup, operations, maintenance, cleaning, emergencies, and so forth.
 - [29 CFR 1910.1000 Table Z-3](#) provides permissible exposure

多結晶シリコン製造における潜在的な危険性は以下の通りである。

- [シリカ \(結晶性\)](#)
- [塩化水素ガス](#)
- [可燃性ガス、火災](#)
- [溶剤](#)

シリカ (結晶性)

潜在的な危険性

- 原料として使用される結晶性シリカへの従業員のばく露の可能性。シリカの吸入は、慢性、加速性又は急性珪肺を引き起こす可能性があり、気管支炎や結核と関連している。一部の研究では肺がんとの関連性も示唆されている。シリコン粉じんへのばく露も発生する可能性がある。対策は結晶性シリカと同様である。

可能な解決策

- シリカ危険性を特定し、適切なばく露評価を実施する。
 - 起動、運転、保守、清掃、緊急時等、全ての潜在的なばく露シナリオを特定・評価する。
 - 29 CFR 1910.1000 表 Z-3 は結晶性シリカの許容ばく露限界値を示す。

<p>limits for crystalline silica.</p> <ul style="list-style-type: none"> ○ OSHA Technical Manual (OTM). OSHA Directive TED 01-00-015 [TED 1-0.15A], (1999, January 20). ○ Sampling for Special Analyses Includes sampling information for crystalline silica. <ul style="list-style-type: none"> ● Provide appropriate ventilation to reduce silica concentration levels in the air. ● Maintain adequate housekeeping to remove unwanted silica dust and reduce concentration levels. ● Use respiratory protection when necessary to further reduce exposure and protect employees. [29 CFR 1910.134] 	<p>○ OSHA 技術マニュアル (OTM)。OSHA 指令 TED 01-00-015 [TED 1-0.15A] (1999 年 1 月 20 日)。</p> <ul style="list-style-type: none"> ○ 特殊分析のためのサンプリングには、結晶性シリカのサンプリング情報が含まれる。 ● 空気中のシリカ濃度を低減するため、適切な換気を行うこと。 ● 不要なシリカ粉じんを除去し濃度を低減するため、十分な清掃を維持すること。 ● 必要に応じて呼吸用保護具を使用し、ばく露をさらに低減し被雇用者を保護すること。[29 CFR 1910.134]
<p><i>Additional Information</i></p>	<p>追加の情報</p>
<p>OSHA Safety and Health Topics Pages:</p> <ul style="list-style-type: none"> ● Respiratory Protection ● Silica, Crystalline ● Ventilation 	<p>OSHA 安全衛生トピックページ :</p> <ul style="list-style-type: none"> ● 呼吸用保護具 ● 結晶性シリカ ● 換気
<p>Hydrogen Chloride Gas</p>	<p>塩化水素ガス</p>
<p><i>Potential Hazard</i></p>	<p>潜在的な危険性</p>
<ul style="list-style-type: none"> ● Possible employee exposure to hydrogen chloride gas. Hydrogen chloride 	<ul style="list-style-type: none"> ● 被雇用者が塩化水素ガスにばく露する可能性。塩化水素は目、皮膚及び粘膜に対して刺激性及び腐食性を有する。高濃度へのばく露は喉頭炎、気管

<p>is irritating and corrosive to the eyes, skin, and mucous membranes. Exposure to high concentrations can cause laryngitis, bronchitis, and pulmonary edema.</p>	<p>支炎及び肺水腫を引き起こす可能性がある。</p>
<p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> Identify hydrogen chloride hazards and perform appropriate exposure evaluations. <ul style="list-style-type: none"> Identify and evaluate all potential exposure scenarios, for example: startup, operations, maintenance, cleaning, emergencies, and so forth. 29 CFR 1910.1000 Table Z-1 provides permissible exposure limits for hydrogen chloride. Occupational Health Guidelines for Chemical Hazards. US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures. Provide appropriate ventilation to reduce hydrogen chloride concentration levels in the air. Provide PPE as appropriate to prevent eye and skin contact with 	<p><i>可能な解決策</i></p> <ul style="list-style-type: none"> 塩化水素の危険性を特定し、適切なばく露評価を実施する。 起動、運転、保守、清掃、緊急時等、あらゆる潜在的なばく露シナリオを特定・評価する。 29 CFR 1910.1000 表 Z-1 は塩化水素の許容ばく露限界値を示す。 化学物質危険性に関する職業衛生ガイドライン。米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物 No. 81-123 (1981年1月)。多数の有害化学物質に関するガイドラインの目次を提供。ファイルには化学的・物理的特性、健康影響、ばく露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。 空気中の塩化水素濃度を低減するため、適切な換気を行うこと。 塩化水素による眼や皮膚への接触を防ぐため、適切な個人用保護具 (PPE) を提供すること。[29 CFR 1910 Subpart I]

<p>hydrogen chloride. [29 CFR 1910 Subpart I]</p> <ul style="list-style-type: none"> Use respiratory protection when necessary to further reduce exposure and protect employees. [29 CFR 1910.134] 	<ul style="list-style-type: none"> ばく露をさらに低減して被雇用者を保護するため、必要に応じて呼吸用保護具を使用すること。[29 CFR 1910.134]
<p><i>Additional Information</i></p> <ul style="list-style-type: none"> Preventing Occupational Illnesses through Safer Chemical Management. OSHA. 	<p>追加情報</p> <ul style="list-style-type: none"> より安全な化学物質管理による職業病の予防。OSHA
<p>OSHA Safety and Health Topics Pages:</p> <ul style="list-style-type: none"> Personal Protective Equipment (PPE) Respiratory Protection Ventilation 	<p>OSHA 安全衛生 トピックページ :</p> <ul style="list-style-type: none"> 個人用保護具 (PPE) 呼吸用保護具 換気
<p>Substrate Manufacture</p> <p>Polycrystalline Silicon Production</p> <p>To manufacture polycrystalline silicon, ultra-pure silicon is produced from raw quartzite (silica sand) that is melted and reduced to silicon in an electric arc furnace at over 1900°C. This metallurgical-grade silicon is drawn from the furnace and blown with oxygen or an oxygen-chloride mixture to reduce the levels of impurities to achieve approximately 99% pure silicon. Next, the silicon is reacted with hydrogen chloride gas in the presence of a copper-containing</p>	<p>基板製造</p> <p>多結晶シリコン製造</p> <p>多結晶シリコンを製造するには、原料である石英岩（珪砂）から超高純度シリコンを生成する。石英岩は電気アーク炉で 1900°C以上で溶融され、還元されてシリコンとなる。この冶金級シリコンは炉から引き出され、酸素又は酸素と塩素との混合ガスを吹き付けて不純物レベルを低減し、約 99%の純度を達成する。次に、銅含有触媒の存在下で、このシリコンを塩化水素ガスと反応させてトリクロロシラン (SiHCl₃) を生成する。トリクロロシランは高温（約</p>

catalyst to form trichlorosilane (SiHCl_3). The trichlorosilane is reduced to very pure silicon by reacting it with hydrogen at high temperatures (about 1100°C). This "electronic grade" silicon has less than 1 ppb of impurities.

The following are the potential hazards of polycrystalline silicon production.

- Polycrystalline Silicon Production
- Single Crystal Ingot Growth
- Ingot Evaluation and Machining
- Wafer Preparation

1100°C) で水素と反応させることで、極めて純度の高いシリコンに還元される。この「電子グレード」シリコンの不純物含有量は 1ppb 未満である。

多結晶シリコン製造における潜在的な危険性は以下のとおりです。

- 多結晶シリコン製造
- 単結晶インゴット成長
- インゴット評価と機械加工
- ウエハー準備

Device Fabrication

- Oxidation
- Cleaning
- Photoresist Application
- Soft Bake
- Mask Alignment and Photoexposure
- Developing

デバイス製造

- 酸化
- 洗浄
- フォトレジスト塗布
- ソフトベーク (軟焼成)
- マスク位置合わせ及び露光
- 現像

<ul style="list-style-type: none"> • Hard Bake • Etching • Photoresist Stripping • Doping (Junction Formation) • Deposition 	<ul style="list-style-type: none"> • ハードベーク(硬焼成) • エッチング • フォトレジスト剥離 • ドーピング (接合形成) • 堆積
<u>Metallization</u> <ul style="list-style-type: none"> • Metal Deposition • Photolithography • Silyation • Metal Etch • Alloying and Annealing • Passivation • Backlapping and Backside Metallization 	<u>メタライゼーション</u> <ul style="list-style-type: none"> • 金属成膜 • フォトリソグラフィ • シリル化 • 金属エッチング • 合金化及び焼鈍 • パッシベーション (不動態化) • バックラッピング及び裏面メタライゼーション (金属化)

<p><u>Non-Fabrication Processing</u></p> <ul style="list-style-type: none"> • Wafer Sort and Test • Die Separation • Die Attach and Bonding • Packaging and Encapsulation 	<p><u>非製造プロセス</u></p> <ul style="list-style-type: none"> • ウエハーの選別及び試験 • ダイの分離 • ダイの取り付け及びボンディング • パッケージング及びカプセル化
<p><u>Definitions</u></p> <p>Alloying:</p> <p>The process of forming a low-resistance contact between the aluminum metal and silicon substrate on a metallized semiconductor wafer. See Metallization - Alloying and Annealing.</p> <p>Annealing:</p> <p>The process of combining hydrogen with uncommitted atoms at or near the silicon-silicon dioxide interface on a metallized semiconductor wafer. See Metallization - Alloying and Annealing.</p> <p>Ashing:</p> <p>The process of removing photoresist from a substrate by oxidation. See Device</p>	<p>定義</p> <p>合金化 :</p> <p>金属化半導体ウエハー上で、アルミニウム金属とシリコン基板との間に低抵抗接点を形成するプロセス。詳細は「金属化 - 合金化及びアニール（焼鈍）」を参照。⇒</p> <p>アニール（焼鈍）処理 :</p> <p>金属配線された半導体ウエハー上のシリコン-二酸化ケイ素界面又はその近傍において、水素を未結合原子と結合させるプロセス。詳細は「金属配線 - 合金化とアニール（焼鈍処理）」を参照。</p> <p>アシング（灰化） :</p>

Fabrication - [Photoresist Stripping](#).

基板上のフォトレジストを酸化によって除去するプロセス。デバイス製造 - フォトレジスト剥離を参照

Backlapping:

The process of mechanically thinning the backside of a finished semiconductor wafer. See Metallization - [Backlapping and Backside Metallization](#).

バックラッピング：

完成した半導体ウエハーの裏面を機械的に薄くする工程。

「メタライゼーション（金属化） - バックラッピング」及び「裏面メタライゼーション（金属化）」を参照。

Backside metallization:

The process of depositing a metal layer on the backside of a finished wafer. See Metallization - [Backlapping and Backside Metallization](#).

裏面メタライゼーション（金属化）：

完成したウエハーの裏面に金属層を堆積するプロセス。メタライゼーション - バックラッピング及び裏面メタライゼーションを参照。

Chip:

The final integrated semiconductor circuit. See [Non-Fabrication Processing](#).

チップ：

最終的な集積半導体回路。非製造プロセスを参照。

Crystal pulling:

The process of forming a crystal ingot; a seed crystal of silicon is attached to a rod and "pulled" out of a silicon melt to form an ingot. See Substrate Manufacture - [Single Crystal Ingot Growth](#).

結晶引き上げ：

結晶インゴットを形成するプロセス。シリコンの種結晶をロッドに取り付け、シリコン溶融液から「引き上げる」ことでインゴットを形成する。詳細は「基板製造 - 単結晶インゴット成長」を参照。

<p>Czochralski method:</p> <p>The crystal pulling method used to form crystal ingots. See Substrate Manufacture - Single Crystal Ingot Growth.</p> <p>Chemical vapor deposition:</p> <p>The process of applying a thin film to a substrate using a controlled chemical reaction. See Device Fabrication - Deposition.</p> <p>Deposition:</p> <p>A general term used to describe the addition of material layers on a semiconductor wafer. See Device Fabrication - Deposition.</p> <p>Die:</p> <p>An individual device or chip cut from a semiconductor wafer. See Non-Fabrication Processing - Die Separation.</p> <p>Diffusion:</p> <p>A doping process; a high-temperature furnace is used to diffuse an applied layer of dopant into the wafer surface. See Device Fabrication - Doping (Junction Formation).</p>	<p>チョクラルスキ法 :</p> <p>結晶インゴットを形成するために用いられる結晶引き上げ法。基材製造 - 単結晶インゴット成長を参照。</p> <p>化学気相成長法 :</p> <p>制御された化学反応を用いて基板上に薄膜を形成するプロセス。デバイス製造 - 堆積を参照。</p> <p>堆積 :</p> <p>半導体ウエハー上に材料層を追加するプロセスを指す総称。デバイス製造 - 堆積を参照。</p> <p>ダイ :</p> <p>半導体ウエハーから切り出された個々のデバイス又はチップ。非製造プロセス - ダイ分離を参照。</p> <p>拡散 :</p> <p>ドーピング工程。高温炉を用いて、ウエハー表面に形成されたドーパント層を拡散させる。デバイス製造 - ドーピング (接合形成) を参照。</p>
--	---

<p>Doping:</p> <p>The process of introducing impurity elements (dopants) into a semiconductor wafer to form regions of differing electrical conductivity. The two most common doping processes are diffusion and ion implantation. See Device Fabrication - Doping (Junction Formation).</p> <p>Epitaxy:</p> <p>A specific chemical vapor deposition process used to form a thin elemental crystal layer on top of an identical substrate crystal. See Device Fabrication - Deposition.</p> <p>Etching:</p> <p>The process of removing silicon dioxide layers, accomplished by "wet etching" with chemicals or by "dry etching" with ionized gases. See Device Fabrication - Etching.</p> <p>Evaporation:</p> <p>A process used to deposit conducting metal layers on a substrate. Heat is used to evaporate a metal source which then condenses on the cooler wafer surface. See Metallization - Metal Deposition.</p>	<p>ドーピング (接合形成) :</p> <p>半導体ウェハーに不純物元素（ドーパント）を導入し、電気伝導度の異なる領域を形成するプロセス。最も一般的なドーピングプロセスは拡散とイオン注入である。デバイス製造 - ドーピング（接合形成）を参照。</p> <p>エピタキシー :</p> <p>同一の基板結晶上に薄い元素結晶層を形成するために用いられる特定の化学気相成長プロセス。デバイス製造 - 堆積を参照。</p> <p>エッチング :</p> <p>化学薬品を用いた「ウェットエッチング」又はイオン化ガスを用いた「ドライエッチング」によって、二酸化ケイ素層を除去するプロセス。デバイス製造 - エッチングを参照。</p> <p>蒸発法 :</p> <p>基板上に導電性金属層を形成するプロセス。熱を用いて金属原料を蒸発させ、冷却されたウェハー表面で凝縮させる。詳細は「メタライゼーション - 金属成膜」を参照。</p>
---	--

<p>Ingots:</p> <p>A polycrystalline silicon cylinder formed by crystal pulling. See Substrate Manufacture - Single Crystal Ingot Growth.</p> <p>Ion implantation:</p> <p>A doping process; the dopant material is ionized and magnetically accelerated to strike the wafer surface, thereby embedding the dopant into the substrate. See Device Fabrication - Doping (Junction Formation).</p> <p>Lapping:</p> <p>The process of mechanically grinding the surface of a sliced wafer. See Substrate Manufacture - Wafer Preparation.</p> <p>Lead frame:</p> <p>The die attachment surface and lead attachment points that a die or chip is attached to prior to wire bonding and packaging. See Non-Fabrication Processing - Die Attach and Bonding.</p> <p>Oxidation:</p> <p>The process of oxidizing the wafer surface to form a thin layer of silicon dioxide.</p>	<p>インゴット :</p> <p>結晶引き上げ法によって形成された多結晶シリコンの円筒体。基板製造 - 単結晶インゴット成長を参照。</p> <p>イオン注入 :</p> <p>ドーピングプロセスの一種。ドーパント物質をイオン化し、磁気加速によってウエハー表面に衝突することで、ドーパントを基板に埋め込む。デバイス製造 - ドーピング (接合形成) を参照。</p> <p>ラッピング :</p> <p>スライスされたウエハーの表面を機械的に研磨する工程。基材製造 - ウエハー準備を参照。</p> <p>リードフレーム :</p> <p>ワイヤボンディング及びパッケージングの前に、ダイ又はチップが取り付けられるダイ取り付け面及びリード取り付け点。非製造プロセス - ダイアタッチ及びボンディングを参照してください。</p> <p>酸化 :</p> <p>ウエハー表面を酸化して二酸化ケイ素の薄膜を形成するプロセス。デバイス製造 - 酸化を参照。</p>
--	--

See Device Fabrication - [Oxidation](#).

Passivation:

The process of applying a final passivating or protective layer of either silicon nitride or silicon dioxide to a wafer. See Metallization - [Passivation](#).

Photolithography:

The process of creating patterns on a silicon substrate. The main steps of the process include photoresist application, mask alignment, photoexposure, developing, and etching the portions of the substrate that are unprotected by the resist. See [Device Fabrication](#).

Photomask:

A mask that delineates the pattern applied to a substrate during photolithography. See Device Fabrication - [Mask Alignment and Photoexposure](#).

Photoresist:

A photosensitive material applied to a wafer and exposed to a device pattern during photolithography. See Device Fabrication - [Photoresist Application](#).

Polycrystalline silicon:

パッシベーション(不動態化) :

ウエハーに窒化ケイ素又は二酸化ケイ素の最終的な不動態化層若しくは保護層を形成するプロセス。「メタライゼーション - パッシベーション」を参照。

フォトリソグラフィ :

シリコン基板上にパターンを形成するプロセス。主な工程には、フォトレジストの塗布、マスクの位置合わせ、露光、現像及びレジストで保護されていない基板部分のエッチングが含まれる。デバイス製造を参照。

フォトマスク :

フォトリソグラフィ工程において基板に形成されるパターンを定義するマスク。詳細は「デバイス製造 - マスク位置合わせと露光」を参照。

フォトレジスト :

ウエハー上に塗布され、フォトリソグラフィ工程においてデバイスパターン形成のために露光される感光性材料。デバイス製造 - フォトレジスト塗布を参照。

多結晶シリコン :

<p>An amorphous form of silicon with randomly oriented crystals, used to produce silicon ingots. See Substrate Manufacture - Polycrystalline Silicon Production.</p>	<p>結晶がランダムに配向したアモルファス状のシリコンで、シリコンインゴットの製造に使用される。基材製造 - 多結晶シリコン製造を参照。</p>
<p>Quartzite:</p>	<p>石英岩：</p>
<p>Silica sand used as a raw material to produce metallurgical grade silicon. See Substrate Manufacture - Polycrystalline Silicon Production.</p>	<p>冶金級シリコンの原料として使用される珪砂。基材製造 - 多結晶シリコン生産を参照。</p>
<p>Reactive ion etching:</p>	<p>反応性イオンエッティング：</p>
<p>An etching process that uses physical sputtering and chemically reactive species to remove metal layers. See Metallization - Metal Etch.</p>	<p>物理的スパッタリングと化学的に反応性のある種を用いて金属層を除去するエッティングプロセス。「メタライゼーション - 金属エッティング」を参照。</p>
<p>Silicon:</p>	<p>シリコン：</p>
<p>A semimetallic element used to create a wafer. See Substrate Manufacture.</p>	<p>ウエハー製造に使用される半金属元素。基板製造を参照。</p>
<p>Silyation:</p>	<p>シリル化：</p>
<p>The process of introducing silicon atoms into the surface of an organic photoresist in order to harden the photoresist. See Metallization - Silyation.</p>	<p>有機フォトレジスト表面にケイ素原子を導入し、フォトレジストを硬化させるプロセス。メタライゼーション - シリル化を参照。</p>
<p>Sputtering:</p>	<p>スパッタリング：</p>
<p>The process of depositing a metal layer onto a wafer by bombarding a target metal material with an argon plasma. The metal is dislodged and deposited on</p>	<p>ターゲット金属材料にアルゴンプラズマを照射することで、ウエハー上に金属層を堆積させるプロセス。金属が剥離し、ウエハー上に堆積する。詳細は「メ</p>

<p>the wafer. See Metallization - Metal Deposition.</p> <p>Wafer:</p> <p>A silicon disc used to form the substrate of a semiconductor device. See Substrate Manufacture - Wafer Preparation.</p>	<p>タライゼーション - 金属堆積」を参照。</p> <p>ウエハー：</p> <p>半導体デバイスの基板を形成するために使用されるシリコン円盤。基板製造 - ウエハー準備を参照。</p>
---	---

<h2>Single Crystal Ingot Growth</h2>	<h2>単結晶インゴット形成</h2>
<p>Almost all crystal growth is done by the Czochralski (Cz) method. This method begins by heating electronic-grade polycrystalline silicon in a quartz crucible to 1200°C in an argon atmosphere. Either radiofrequency (RF) or resistance heating is used. A starter or "seed" crystal of silicon is placed onto the end of a rod and dipped into the melt to form the crystal. The seed and crucible are rotated in opposite directions while the seed is withdrawn. Silicon atoms attach to the rod and the crystal grows in size. Careful control of temperature, rotation speed, and vertical withdrawal determines the size of the ingot. Different atmospheres (inert, oxidizing, reducing) and pressures (vacuum, high pressure) also are maintained in the growth chamber depending on the type of crystal desired.</p> <p>Controlled amounts of impurities are added during crystal growth to establish the desired electrical properties for the silicon. The melt is usually "doped" with elements like boron, phosphorous, arsenic, or antimony.</p>	<p>結晶成長のほとんどはチョクラルスキ法 (Cz 法) によって行われる。この方法では、まず電子グレードの多結晶シリコンを石英るつぼに入れ、アルゴン雰囲気下で 1200°Cまで加熱する。加熱には高周波 (RF) 加熱又は抵抗加熱が用いられる。シリコンのスターター結晶又は「種結晶」を棒の先端に取り付け、溶融液に浸漬して結晶を形成する。温度、回転速度及び垂直引き上げを慎重に制御することで、インゴットのサイズが決定される。また、成長室では、目的とする結晶の種類に応じて、異なる雰囲気 (不活性、酸化性、還元性) と圧力 (真空、高圧) も維持される。</p> <p>結晶成長中に制御された量の不純物を添加し、シリコンに所望の電気的特性を付与する。溶融物は通常、ホウ素、リン、ヒ素、アンチモン等の元素で「ドーピング」される。</p>

<p>The following are the potential hazards of single crystal ingot growth.</p> <ul style="list-style-type: none"> • Metals and Salts • Solvents • Radiofrequency (RF) and Infrared (IR) Radiation 	<p>単結晶インゴット成長における潜在的な危険性は以下のとおりである。</p> <ul style="list-style-type: none"> • 金属及び塩類 • 溶剤 • 高周波 (RF) 及び赤外線 (IR) 放射
<p>Metals and Salts</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> • Possible employee exposure to various metals and salts used for elemental dopants, including phosphorous, boron, arsenic, antimony, magnesium, etc. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> • Identify metal hazards and perform appropriate exposure evaluations. <ul style="list-style-type: none"> ◦ Perform exposure measurements for the compounds used. ◦ Keep exposures below acceptable exposure levels. ◦ Address all dermal exposures. ◦ • Provide appropriate ventilation to reduce concentration levels in air. 	<p>金属及び塩類</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> • リン、ホウ素、ヒ素、アンチモン、マグネシウム等、元素ドーパントとして使用される各種金属及び塩類への被雇用者ばく露の可能性。 <p>可能な解決策</p> <ul style="list-style-type: none"> • 金属による危険性を特定し、適切なばく露評価を実施する。 ◦ 使用する化合物のばく露測定を実施する。 ◦ ばく露を許容ばく露レベル以下に維持する。 ◦ すべての皮膚ばく露に対処する。 • 空気中の濃度レベルを低減するため、適切な換気を行うこと。

- Provide PPE as appropriate to prevent contact. [\[29 CFR 1910 Subpart I\]](#)
- Use respiratory protection when necessary to further reduce exposure and protect employees. [\[29 CFR 1910.134\]](#)
- Maintain adequate housekeeping to remove unwanted metals and reduce concentration levels.

Additional Information

- [Preventing Occupational Illnesses through Safer Chemical Management](#). OSHA.
- [Occupational Health Guidelines for Chemical Hazards](#). US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures.

OSHA Safety and Health Topics Pages:

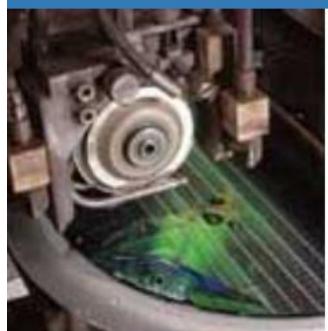
- [Dermal Exposure](#)
- [Personal Protective Equipment \(PPE\)](#)
- [Respiratory Protection](#)

- 接触を防止するため、必要に応じて個人用保護具 (PPE) を提供すること。 [29 CFR 1910 Subpart I]
- ばく露をさらに低減し被雇用者を保護するため、必要に応じて呼吸用保護具を使用すること。 [29 CFR 1910.134]
- 不要な金属を除去し濃度レベルを低減するため、適切な清掃管理を維持すること。

追加情報

- より安全な化学物質管理による職業病の予防。OSHA。
- 化学物質の危険性に関する職業衛生ガイドライン。米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多数の有害化学物質に関するガイドラインの目次を提供。各ファイルには、化学的・物理的特性、健康影響、暴露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。

OSHA 安全衛生トピックページ :


- 皮膚ばく露
- 個人用保護具 (PPE)
- 呼吸用保護具

<ul style="list-style-type: none"> • Sampling and Analysis • Toxic Metals • Ventilation 	<ul style="list-style-type: none"> • サンプリングと分析 • 有毒金属 • 換気
<h2>へ Ingot Evaluation and Machining</h2>	<p>インゴット評価及び機械化</p>
<p>Before the ingots are sliced into wafer substrates, the ends of the new single-crystal ingot are cropped using a water-lubricated single-bladed diamond saw. The ingot is then placed on a lathe and ground to a uniform diameter. The ends of the cropped and ground ingots are chamfered (beveled), using a dry belt sander, which reduces the possibility of shattering the ingot. The crystal structure of the ingot is determined by x-ray diffraction, then a longitudinal section of the ingot cylinder is removed by wet grinding to produce a "flat". This flat is used to mark the crystal orientation of the ingot.</p> <p>The following are the potential hazards of ingot evaluation and machining.</p> <ul style="list-style-type: none"> • Nuisance Dust • Machinery • X-ray Radiation 	<p>インゴットをウエハー基板にスライスする前に、新しい単結晶インゴットの両端を水潤滑式单刃ダイヤモンドソーで切断する。その後、インゴットを旋盤に設置し均一な直径に研削する。切断・研削後のインゴット端面は乾式ベルトサンダーで面取り（ベベル加工）され、インゴットの破碎リスクを低減する。インゴットの結晶構造は X 線回折法で決定され、その後インゴット円筒の縦断面を湿式研削により除去して「フラット」を作成する。このフラットを用いてインゴットの結晶方位をマーキングする。</p> <p>インゴットの評価及び加工における潜在的な危険性は以下のとおりです。</p> <ul style="list-style-type: none"> • 有害な粉じん • 機械設備 • X 線放射線

<h2>へ Wafer Preparation</h2>	<p>ウエハー製造</p>
--	---------------

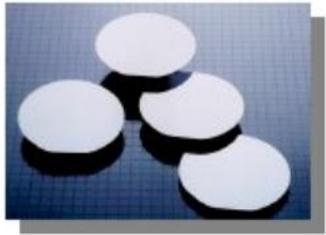
To prepare the wafers, ingots are sliced into individual wafers with multiple-blade inner-diameter saws. This operation is done with wet lubricants, and in some processes the wafers are stored in plastic reservoirs containing water or methanol. The sliced wafers are mechanically lapped under pressure using a counter-rotating machine to achieve flatness and parallelism on both sides of the wafer. Most lapping operations use slurries of either aluminum oxide or silicon carbide. The edges of the individual wafers are also rounded by the use of wet automatic grinders.

After lapping, wafers are etched with a solution containing nitric, acetic, and hydrofluoric acids. Etching may be done in manual etch tanks or by automated etching machines. This etching process removes external surface damage and reduces the thickness of the wafer.

ウエハーを製造するには、インゴットを多刃内径ソーで個々のウエハーに切断する。この工程では湿式潤滑剤を使用し、一部のプロセスではウエハーを水又はメタノールを含むプラスチック製貯蔵容器に保管する。切断されたウエハーは、両面の平坦性と平行性を確保するため、逆回転式機械を用いて加圧下で機械研磨される。ほとんどの研磨工程では、酸化アルミニウム又は炭化ケイ素のスラリーが使用される。個々のウエハーのエッジは、湿式自動研削盤を用いて丸め加工される。

ラッピング後、ウエハーは硝酸、酢酸、フッ化水素酸を含む溶液でエッティングされる。エッティングは手動エッティング槽又は自動エッティング装置で行われる。このエッティング工程により表面の損傷が除去され、ウエハーの厚みが減少する。

Next, the wafers are polished using an aqueous mixture of colloidal silica and sodium hydroxide. The wafers are mounted onto a metal carrier plate that is attached by vacuum to the polishing machine. The polishing process usually involves two or three polishing steps with progressively finer slurry, which decreases wafer thickness and results in a mirror-like finish. Sometimes carrier pads must be stripped from the metal carrier plates. The pads are usually stripped with solvents such as methylene chloride, methyl ethyl ketone, or a glycol ether mixture.


Finally, the wafers are cleaned to remove any particles or residue remaining on the exterior surface of the polished wafer. Various cleaning steps and solutions containing ammonia, hydrogen peroxide, hydrofluoric acid, hydrochloric acid, and deionized water may be used.

The finished wafers are inspected and packaged for shipping. It should be noted that most semiconductor manufacturers purchase wafers from firms that specialize in wafer production.

次に、ウエハーはコロイド状シリカと水酸化ナトリウムとの水溶液混合物を用いて研磨される。ウエハーは金属キャリアプレートに取り付けられ、真空で研磨機に固定される。研磨工程では通常、次第に微細な研磨スラリーを用いた2～3段階の研磨が行われ、これによりウエハーの厚みが減少し鏡面仕上げが得られる。場合によっては、金属キャリアプレートからキャリアパッドを剥離する必要があります。パッドの剥離には通常、塩化メチレン、メチルエチルケトン、又はグリコールエーテル混合物などの溶剤が使用されます。

最後に、研磨されたウエハーの外表面に残留する粒子や残留物を除去するため、ウエハーを洗浄する。アンモニア、過酸化水素、フッ化水素酸、塩酸及び脱イオン水を含む様々な洗浄工程と溶液が使用される場合がある。

完成したウエハーは検査され、出荷用に梱包される。大半の半導体メーカーはウエハー製造を専門とする企業からウエハーを購入している点に留意すべきである。

The following are the potential hazards of wafer preparation.

- [Methanol](#)
- [Nuisance Dust](#)
- [Machinery](#)
- [Acids](#)
- [Solvents](#)
- [Chemicals](#)

ウエハー準備における潜在的な危険性は以下のとおりです。

- メタノール
- 有害粉じん
- 機械類
- 酸類
- 溶剤
- 化学薬品

Methanol

Potential Hazard

- Possible employee exposure to methanol during wafer washing and

メタノール

潜在的な危険性

<p>storage.</p> <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> Identify methanol hazards and perform appropriate exposure evaluations. <ul style="list-style-type: none"> Perform exposure measurements. Keep exposures below acceptable exposure levels. Address all dermal exposures. Provide appropriate ventilation to reduce solvent concentration levels in the air. Provide PPE as appropriate to prevent eye and skin contact. [29 CFR 1910 Subpart I] Use respiratory protection when necessary to further reduce exposure and protect employees. [29 CFR 1910.134] <p><i>Additional Information</i></p> <ul style="list-style-type: none"> Preventing Occupational Illnesses through Safer Chemical 	<ul style="list-style-type: none"> ウェハー洗浄及び保管作業中に従業員がメタノールにばく露する可能性。 <p>可能な解決策</p> <ul style="list-style-type: none"> メタノールの危険性を特定し、適切なばく露評価を実施する。 ばく露測定を実施する。 ばく露を許容ばく露レベル以下に維持する。 皮膚ばく露をすべて対処する。 <ul style="list-style-type: none"> 適切な換気設備を設置し、空気中の溶剤濃度を低減する。 目や皮膚への接触を防ぐため、適切な個人用保護具（PPE）を提供する。[29 CFR 1910 Subpart I] ばく露をさらに低減し被雇用者を保護するため、必要に応じて呼吸用保護具を使用する。[29 CFR 1910.134] <p>追加情報</p> <ul style="list-style-type: none"> より安全な化学物質管理による職業病の予防。OSHA。
---	---

<p><u>Management</u>. OSHA.</p> <p>OSHA Safety and Health Topics Pages:</p> <ul style="list-style-type: none"> • <u>Dermal Exposure</u> • <u>Personal Protective Equipment (PPE)</u> • <u>Respiratory Protection</u> • <u>Sampling and Analysis</u> • <u>Ventilation</u> 	<p>OSHA 安全衛生トピックページ：</p> <ul style="list-style-type: none"> • 皮膚ばく露 • 個人用保護具 (PPE) • 呼吸用保護具 • サンプリングと分析 • 換気
<p>Acids</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> • Possible employee exposure to acids used during etching. Typical acids may include HF, CH₃COOH, and HNO₃. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> • See <u>Possible Solutions: Acids and Caustics</u>. <p><i>Additional Information</i></p> <ul style="list-style-type: none"> • <u>Preventing Occupational Illnesses through Safer Chemical Management</u>. OSHA. 	<p>酸</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> • エッチング工程で使用される酸への被雇用者のはく露の可能性。代表的な酸には HF、CH₃COOH、HNO₃ が含まれる。 <p>可能な解決策</p> <ul style="list-style-type: none"> • 「酸及びアルカリ性物質に関する可能な解決策」を参照。 <p>追加情報</p> <ul style="list-style-type: none"> • より安全な化学物質管理による職業病の予防。OSHA。 • 化学物質の危険性に関する職業衛生ガイドライン。米国保健社会福祉省

<ul style="list-style-type: none"> • Occupational Health Guidelines for Chemical Hazards. US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures. 	<p>(DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多数の有害化学物質に関するガイドラインの目次を提供。各ファイルには、化学的・物理的特性、健康影響、ばく露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。</p>
<p>Solvents</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> • Possible employee exposure to solvents used for stripping carrier pads. Typical solvents may include methylene chloride, MEK, and glycol ethers. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> • See Possible Solutions: Solvents. 	<p>溶剤</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> • キャリアパッド剥離に使用される溶剤への被雇用者ばく露の可能性。代表的な溶剤には塩化メチレン、MEK、グリコールエーテル等が含まれる。 <p>可能な解決策</p> <ul style="list-style-type: none"> • 「溶剤に関する可能な解決策」を参照。
<p><i>Additional Information</i></p> <ul style="list-style-type: none"> • Methylene Chloride. OSHA Safety and Health Topics Page. 	<p>追加情報</p> <ul style="list-style-type: none"> • 塩化メチレン。OSHA 安全衛生トピックページ。
<p>Chemicals</p> <p><i>Potential Hazard</i></p>	<p>化学物質</p> <p>潜在的な危険性</p>

<ul style="list-style-type: none"> Possible employee exposure to additional chemicals used for final cleaning. Typical chemicals may include NH₃, H₂O₂, HF, and HCl. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> See Possible Solutions: Chemicals. 	<ul style="list-style-type: none"> 最終洗浄に使用される追加の化学物質への被雇用者のばく露の可能性。代表的な化学物質には NH₃、H₂O₂、HF 及び HCl が含まれる。 <p>可能な解決策</p> <ul style="list-style-type: none"> 「化学物質に関する可能な解決策」を参照。
<p><i>Additional Information</i></p> <ul style="list-style-type: none"> Preventing Occupational Illnesses through Safer Chemical Management. OSHA. Occupational Health Guidelines for Chemical Hazards. US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures. 	<p>追加情報</p> <ul style="list-style-type: none"> より安全な化学物質管理による職業病の予防。OSHA。 化学物質の危険性に関する職業衛生ガイドライン。米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多数の有害化学物質に関するガイドラインの目次を提供。各ファイルには、化学的・物理的特性、健康影響、ばく露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。

Device Fabrication	デバイス製造
^ Oxidation	酸化

The fabrication of an integrated circuit involves a sequence of processes that may be repeated many times before a circuit is complete. The device fabrication steps discussed in this and subsequent sections may be repeated anywhere from six to 15 times to achieve the desired product. Robotic arm transfers a wafer.

Generally, the first step in semiconductor device fabrication involves the oxidation of the wafer surface in order to grow a thin layer of silicon dioxide (SiO_2). This oxide is used to provide insulating and passivation layers.

- The most common method of oxidation is thermal, and can be classified as either "dry" or "wet" oxidation. Wafers are loaded into quartz boats and slid into a furnace heated to approximately 1200°C.
 - In dry oxidation, thin oxide layers are grown in an environment containing oxygen and hydrogen chloride near atmospheric pressure
 - Thicker oxide layers require higher pressures and the use of steam (wet oxidation). Wet oxidation is performed by exposing the wafer to a mixture of oxygen and hydrogen in the furnace chamber. Water vapor is formed when the hydrogen and oxygen react.

The following are the potential hazards of oxidation.

- [Flammable Gases, Fire](#)
- [Toxic Exhaust Gases](#)
- [Radiofrequency \(RF\) and Infrared \(IR\) Radiation](#)

集積回路の製造には一連の工程が含まれ、回路が完成するまでに何度も繰り返される場合がある。本節及び後続の節で説明するデバイス製造ステップは、目的の製品を得るために 6 回から 15 回程度繰り返されることがある。ロボットアームがウエハーを移送する。

半導体デバイスの製造プロセスでは、一般的に最初の工程として、ウエハー表面を酸化させて二酸化ケイ素 (SiO_2) の薄膜を形成する。この酸化膜は絶縁層及びパッシベーション層として用いられる。

• 酸化処理で最も一般的な方法は熱酸化であり、「乾式」又は「湿式」酸化に分類される。ウエハーは石英ポートに載せられ、約 1200°Cに加熱された炉内に挿入される。

◦ 乾式酸化では、大気圧に近い環境下で酸素と塩化水素とを含む雰囲気中において薄膜酸化層が形成される

◦ より厚い酸化膜を形成するには、より高い圧力と水蒸気（湿式酸化）の使用が必要となる。湿式酸化は、炉内チャンバー内でウエハーを酸素と水素の混合気に曝すことで行われる。水素と酸素が反応すると水蒸気が生成される。

酸化による潜在的な危険性は以下のとおりです。

- 可燃性ガス、火災
- 有毒排気ガス

<p>Toxic Exhaust Gases</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> Possible employee exposure to corrosive exhaust gases, including hydrogen chloride. Gases such as hydrogen chloride can be irritating and corrosive to the eyes, skin, and mucous membranes. Exposure to high concentrations can cause laryngitis, bronchitis, and pulmonary edema. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> See Possible Solutions: Toxic Exhaust Gases. <p><i>Additional Information</i></p> <ul style="list-style-type: none"> Occupational Health Guidelines for Chemical Hazards. US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures. 	<ul style="list-style-type: none"> 高周波 (RF) 及び赤外線 (IR) 放射 <p>有毒排気ガス</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> 塩化水素を含む腐食性排気ガスへの被雇用者のばく露の可能性。塩化水素等のガスは、目、皮膚及び粘膜に対して刺激性及び腐食性を有する。高濃度へのばく露は喉頭炎、気管支炎及び肺水腫を引き起こす可能性がある。 <p>可能な解決策</p> <ul style="list-style-type: none"> 「有毒排気ガス」の可能な解決策を参照。 <p>追加情報</p> <ul style="list-style-type: none"> 化学物質危険に関する職業衛生ガイドライン。米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多数の有害化学物質に関するガイドラインの目次を提供。ファイルには化学的・物理的特性、健康影響、暴露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。
---	---

)

^ Cleaning

The need for a particulate and contamination-free wafer surface requires frequent cleaning. The major types of cleaning are:

- Deionized water and detergent scrubbing.
- Solvent: isopropyl alcohol (IPA), acetone, ethanol, terpenes.
- Acid: HF, H₂SO₄ and H₂O₂, HCl, HNO₃, and mixtures.
- Caustic: NH₄OH

The following are the potential hazards of cleaning.

- [Solvents](#)
- [Acids and Caustic Solutions](#)

Acids and Caustic Solutions

Potential Hazard

- Possible employee exposure to acid and caustic solutions used during cleaning.

洗净（クリーニング

ウエハー表面の微粒子及び汚染物質を除去する必要性から、頻繁な洗净が求められます。主な洗净方法には以下の種類があります：

- 脱イオン水と洗剤による擦り洗い。
- 溶剤：イソプロピルアルコール (IPA)、アセトン、エタノール、テルペン類。
- 酸：HF、H₂SO₄及びH₂O₂、HCl、HNO₃、並びにそれらの混合物。
- 腐食性：NH₄OH

清掃作業における潜在的な危険性は以下のとおりです。

- 溶剤
- 酸及びアルカリ溶液

酸及びアルカリ溶液

潜在的な危険性

- 清掃作業中に使用される酸及びアルカリ溶液への被雇用者のばく露の可能性

- Typical acids may include mixtures of HF, H₂SO₄, H₂O₂, HCl, and HNO₃.
- Caustic solutions include mainly NH₄OH.

Possible Solutions

- See [Possible Solutions: Acids and Caustics](#).

Additional Information

- [Occupational Health Guidelines for Chemical Hazards](#). US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures.

○ 代表的な酸には、HF、H₂SO₄、H₂O₂、HCl、HNO₃の混合物が含まれる場合があります。

○ アルカリ溶液には主に NH₄OH が含まれます。

可能な解決策

- 「可能な解決策：酸及びアルカリ性物質」を参照。

追加情報

- 化学物質危険性に関する職業衛生ガイドライン。米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多くの有害化学物質に関するガイドラインの目次を提供。ファイルには化学的・物理的特性、健康影響、ばく露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。

Photoresist Chemicals

Potential Hazard

フォトレジスト化学薬品

潜在的な危険性

- Possible employee exposure to photoresist chemicals (see [Table 1](#)).

Possible Solutions

- Identify chemical hazards and perform appropriate exposure evaluations.
 - Perform exposure measurements for the chemicals used.
 - [29 CFR 1910.1000 Table Z-1](#) provides permissible exposure limits for various chemicals.
- Address all dermal exposures.
- Provide appropriate ventilation to reduce chemical concentration levels in the air.
- Provide PPE as appropriate to prevent eye and skin contact. [[29 CFR 1910 Subpart I](#)]
- Use respiratory protection when necessary to further reduce exposure and protect employees. [[29 CFR 1910.134](#)]
- Design and use specialized processing, material handling, and storage equipment to properly contain chemicals. Consider both normal use and emergency scenarios.
- Install emergency facilities to provide immediate treatment in the event of an accidental exposure to corrosive materials. According to [29 CFR 1910.151](#), provide suitable facilities for quick drenching or flushing of the eyes and body for immediate emergency use whenever

- 被雇用者がフォトレジスト化学薬品にばく露する可能性（表 1 参照）。

可能な解決策

- 化学的危険性を特定し、適切なばく露評価を実施する。
- 使用する化学薬品についてばく露測定を実施する。
- 29 CFR 1910.1000 表 Z-1 は各種化学薬品に対する許容ばく露限界値を規定している。
- 皮膚へのばく露をすべて対処すること。
- 空気中の化学物質濃度を低減するため、適切な換気を行うこと。
- 目や皮膚への接触を防ぐため、適切な個人用保護具（PPE）を提供すること。[29 CFR 1910 Subpart I]
- ばく露をさらに低減し被雇用者を保護するため、必要に応じて呼吸用保護具を使用すること。[29 CFR 1910.134]
- 化学物質を適切に収容するため、専用の処理・運搬・保管設備を設計して使用する。通常使用時と緊急事態の両方を考慮すること。
- 腐食性物質への偶発的暴露時に即時処置を提供するため、緊急施設を設置する。29 CFR 1910.151 に基づき、目や身体が腐食性物質に暴露される可能性がある場合に備えて、適切な緊急施設を設置すること。

<p>the eyes or body may be exposed to corrosive materials.</p>	<p>ある場合は、緊急時に直ちに使用できる適切な設備（目や身体を迅速に洗浄・洗浄するための設備）を設けること。</p>
<p><i>Additional Information</i></p> <ul style="list-style-type: none"> • <u>Occupational Health Guidelines for Chemical Hazards</u>. US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures. 	<p>追加情報</p> <ul style="list-style-type: none"> • 化学物質の危険性に関する職業衛生ガイドライン。米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多数の有害化学物質に関するガイドラインの目次を提供。各ファイルには、化学的・物理的特性、健康影響、ばく露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。
<p>OSHA Safety and Health Topics Pages:</p> <ul style="list-style-type: none"> • <u>Dermal Exposure</u> • <u>Medical and First Aid</u> • <u>Personal Protective Equipment (PPE)</u> • <u>Respiratory Protection</u> • <u>Sampling and Analysis</u> • <u>Ventilation</u> 	<p>OSHA 安全衛生トピックページ :</p> <ul style="list-style-type: none"> • 皮膚ばく露 • 医療と応急手当 • 個人用保護具 (PPE) • 呼吸用保護具 • サンプリングと分析 • 換気
<p>Solvents</p> <p><i>Potential Hazard</i></p>	<p>溶剤</p> <p>潜在的な危険性</p>

- Possible employee exposure to solvents used for adhesive application.
 - Glycol ethers have been a popular solvent. However, due to reproductive effects associated with exposures, they have been replaced with other chemicals.
 - Replacement solvents for glycol ethers have included chemicals such as xylene, n-butyl acetate, acetone, and 1,1,1-trichloroethane.

Possible Solutions

- See [Possible Solutions: Solvents](#)
- Substitute glycol ethers with less hazardous solvents, when possible.

Additional Information

- [Occupational Health Guidelines for Chemical Hazards](#). US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures.

- 接着剤塗布に使用される溶剤への被雇用者のばく露の可能性。
 - グリコールエーテルは広く使用されてきた溶剤である。しかし、ばく露に伴う生殖への影響のため、他の化学物質に置き換えられている。
 - グリコールエーテルの代替溶剤としては、キシレン、n-ブチルアセテート、アセトン、1,1,1-トリクロロエタンなどの化学物質が挙げられる。

可能な解決策

- 溶剤に関する可能な解決策を参照
- 可能な場合は、グリコールエーテルを危険性の低い溶剤に代替する。

追加情報

- 化学物質の危険性に関する職業衛生ガイドライン。米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物 No. 81-123 (1981年1月)。多くの有害化学物質に関するガイドラインの目次を提供。ファイルには化学的・物理的特性、健康影響、ばく露限界値、医療モニタリング、個人用保護具 (PPE)、管理手順に関する推奨事項を含む技術的化学情報が記載されている。

^ Soft Bake

After photoresist application, the wafers are "soft baked" by placing them in an oven at moderate temperatures around 70-90°C. This soft bake causes the photoresist to cure and the remaining solvents to evaporate.

The following are the potential hazards of soft baking.

- [Toxic Exhaust Gases](#)
- [Thermal Burns](#)

ソフト(軟) 焼成

フォトレジスト塗布後、ウエハーは 70~90°C程度の中温オーブンで「ソフトベーク」処理される。このソフトベーク（ソフト(軟) 焼成）によりフォトレジストが硬化し、残留溶剤が蒸発する。

ソフトベーキング（ソフト(軟) 焼成）の潜在的な危険性は以下のとおりです。

- 有毒排気ガス
- 熱傷

^ Mask Alignment and Photoexposure

A photomask is aligned and placed on the coated wafer with precision instruments. The wafer and mask are then exposed to ultraviolet (UV) radiation from an intense mercury arc lamp. This causes exposure to the photo resist in places not protected by opaque regions of the mask. With a typical positive photoresist, the areas struck by light undergo a chemical

マスク位置合わせ及び露光

精密機器を用いてフォトマスクを位置合わせし、コーティング済みのウエハー上に配置する。その後、ウエハーとマスクは高輝度水銀アークランプからの紫外線（UV）照射を受ける。これにより、マスクの不透明領域で保護されていない箇所のフォトレジストが露光される。一般的なポジ型フォトレジストでは、光が当たった領域で化学反応が起り、アルカリ溶液への溶解性が高まる。UV

reaction that will make the photoresist more soluble in an alkaline solution. UV exposure is the most common; however, x-ray and electron beam sources also may be used.

The following are the potential hazards of mask alignment and photo exposure

露光が最も一般的だが、X線や電子ビーム光源も使用されることがある。

マスク位置合わせ及び露光における潜在的な危険性は以下のとおりです

Ultraviolet (UV) Radiation

Potential Hazard

- Possible employee exposure to ultraviolet (UV) radiation during photoexposure.

Possible Solutions

- Identify UV hazards; perform exposure evaluations when applicable.
- Enclose operations with UV emissions; provide shielding and interlocks as necessary.

紫外線 (UV) 放射

潜在的な危険性

- ・光照射作業中に被雇用者が紫外線 (UV) にばく露する可能性。

可能な解決策

- ・紫外線危険性を特定し、必要に応じてばく露評価を実施する。
- ・紫外線を放出する作業を囲い込み、必要に応じて遮蔽装置とインターロック

- Provide PPE as appropriate during operations when exposure is necessary. [\[1910 Subpart I\]](#)
- Implement UV radiation safety programs to further identify and control UV hazards. Ozone gas may also be generated from the UV radiation.
- Provide adequate ventilation to control ozone concentrations.

Additional Information

OSHA Safety and Health Topics Pages:

- [Non-Ionizing Radiation](#)
- [Personal Protective Equipment \(PPE\)](#)
- [Ventilation](#)

Mercury

Potential Hazard

- Possible employee exposure to mercury from lamp rupture. Improper maintenance or infrequent bulb replacement can cause deteriorated or older lamps to rupture.

を設置する。

- ばく露が必要な作業中は適切な個人用保護具 (PPE) を提供すること。[\[1910 Subpart I\]](#)
- 紫外線危険の特定と管理を強化するため、紫外線安全プログラムを実施すること。紫外線照射によりオゾンガスが発生する可能性がある。
- オゾン濃度を管理するため十分な換気を提供すること。

追加情報

OSHA 安全衛生トピックページ :

- 非電離放射線
- 個人用保護具 (PPE)
- 換気

水銀

潜在的な危険性

- ランプ破損による被雇用者の水銀ばく露の可能性。不適切な保守又は不十分な電球交換

<p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> • Implement preventive maintenance to inspect and replace lamps routinely. • Implement proper work practices to ensure that lamps are replaced carefully in order to avoid accidental breakage. • Store and dispose of lamps properly. • Respond to and clean up mercury spills properly. • Provide adequate PPE as necessary to minimize exposure. 	<p>可能な解決策</p> <ul style="list-style-type: none"> ・予防保全を実施し、ランプを定期的に点検し、及び交換する。 ・適切な作業手順を実施し、ランプを慎重に交換して偶発的な破損を防止する。 ・ランプを適切に保管し、及び廃棄する。 ・水銀漏出に適切に対応し、清掃を行う。 ・ばく露を最小限に抑えるため、必要に応じて適切な個人用保護具（PPE）を提供する。
<p><i>Additional Information</i></p> <p>OSHA Safety and Health Topics Pages:</p> <ul style="list-style-type: none"> • Mercury • Personal Protective Equipment (PPE) 	<p>追加情報</p> <p>OSHA 安全衛生トピックページ：</p> <ul style="list-style-type: none"> ・水銀 <p>個人用保護具（PPE）</p>

<p>↖ Developing</p>	<p>現像</p>
<p>Following exposure, the wafers are developed with aqueous solutions of either sodium hydroxide or potassium hydroxide. The developer is applied by</p>	<p>露光後、ウエハーは水酸化ナトリウム又は水酸化カリウムの水溶液で現像される。現像液は浸漬、スプレー又は噴霧によって塗布され、フォトレジストの未</p>

either immersion, spraying, or atomization, causing the unpolymerized areas of the photoresist to be dissolved and removed. Various developer solutions are identified in [Table 1](#). A solvent rinse (n-butyl acetate, IPA, acetone, etc.) is usually applied following the developer to remove any residual material.

The following are the potential hazards of developing.

- [Caustic Solutions and Aerosols](#)
- [Solvents](#)

Caustic Solutions and Aerosols

Potential Hazard

- Possible employee exposure to caustic solutions and aerosols used during developing. Typical caustics include NaOH and KOH.

Possible Solutions

- See [Possible Solutions: Acids and Caustic](#).

重合領域を溶解され、及び除去される。各種現像液は表 1 に示す。通常、現像後に溶剤洗浄（酢酸 n-ブチル、IPA、アセトン等）を行い、残留物を除去する。

現像工程における潜在的な危険性は以下のとおりです。

- 強アルカリ溶液及びエアロゾル
- 溶剤

苛性溶液及びエアロゾル

潜在的な危険性

- 現像工程で使用される苛性溶液及びエアロゾルへの被雇用者のばく露の可能性。代表的な苛性物質には NaOH 及び KOH が含まれる。

可能な解決策

「可能な解決策：酸及び苛性物質」を参照。

Hard Bake

After developing, an additional baking process or "hard bake" is performed to harden the remaining photoresist to a finish much like the enamel on an automobile. The photoresist is then ready to protect the underlying

焼成工程(ハードベーク)

現像後、追加の焼成工程（ハードベーク）を行い、残存フォトレジストを自動車のエナメル塗装のような硬度に硬化させる。これによりフォトレジストはエ

<p>SiO₂ during etching.</p> <p>The following are the potential hazards of hard baking.</p> <ul style="list-style-type: none"> • Toxic Exhaust Gases • Thermal Burns 	<p>ツチング工程において下層の SiO₂ を保護する準備が整う。</p> <p>焼成工程(ハードベーク)に伴う潜在的な危険性は以下のとおりである。</p> <ul style="list-style-type: none"> ・有毒排気ガス ・熱傷
--	--

<p>^ Etching</p>	<p>蝕刻 (エッチング)</p>
<p>Etching removes layers of SiO₂, metals, and polysilicon, according to the desired patterns delineated by the resist. The two major methods of etching are wet chemical etching or dry chemical etching.</p> <p>Wet Chemical Etching: Wet etching is accomplished by submersion of the wafer in an acid bath. Common wet etchant chemical solutions are shown in Table 2. In general, etching solutions are housed in polypropylene, temperature-controlled baths. The baths are usually equipped with either a ring-type plenum exhaust ventilation or a slotted exhaust at the rear of the etch station. Vertical laminar-flow hoods are used to supply uniformly-filtered, particulate-free air to the top surface of the etch baths.</p> <p>Dry Chemical Etching: Dry etching is commonly used due to its ability to better control the etching process and reduce contamination levels. Dry processing effectively etches desired layers through the use of gases, using either, a chemically reactive gas, or through physical bombardment of argon atoms.</p> <p>Chemical - Plasma Etching: Plasma etching systems have been developed</p>	<p>エッチングは、レジストによって描かれた所望のパターンに従って、SiO₂、金属及びポリポリシリコンの層を除去する。エッチングの主要な方法は、湿式化学エッチングと乾式化学エッチングとの2つである。</p> <p>湿式化学エッチング : 湿式エッチングは、ウェハーを酸浴に浸漬することで行われる。一般的な湿式エッチング剤の化学溶液を表2に示す。通常、エッチング溶液はポリプロピレン製の温度制御浴槽に収容される。浴槽には通常、エッチングステーション後部にリング型プレナム排気装置又はスロット式排気装置のいずれかが装備されている。垂直層流フードは、均一にろ過された微粒子を含まない空気をエッチング浴槽上面に供給するために使用される。</p> <p>ドライ化学エッチング : ドライエッチングは、エッチングプロセスをより良好に制御し、汚染レベルを低減できるため、一般的に使用される。ドライプロセスは、化学反応性ガスを使用するか、アルゴン原子の物理的衝撃によって、目的の層を効果的にエッチングする。</p> <p>化学 - プラズマエッチング : シリコン、二酸化ケイ素、窒化ケイ素、アルミニウム、タンタル、タンタル化合物、クロム、タンクステン、金及びガラスを効</p>

that can effectively etch silicon, silicon dioxide, silicon nitride, aluminum, tantalum, tantalum compounds, chromium, tungsten, gold, and glass. Two kinds of plasma etching reactor systems are in use -- the barrel (cylindrical), and the parallel plate (planar). Both reactor types operate on the same principles and vary primarily in configuration only. The typical reactor consists of a vacuum reactor chamber made usually of aluminum, glass, or quartz. A radiofrequency (RF) energy source is used to activate fluorine-based or chlorine-based gases which act as etchants. Wafers are loaded into the chamber, a pump evacuates the chamber, and the reagent gas is introduced. The RF energy ionizes the gas and forms the etching plasma, which reacts with the wafers to form volatile products which are pumped away. [Table 3](#) identifies the materials and plasma gases in use for etching various layers.

Physical Bombardment: Physical etching processes are similar to sandblasting; argon gas atoms are used to physically bombard the layer to be etched, and a vacuum pump system is used to remove dislocated material. Sputter etching is one physical technique involving ion impact and energy transfer. The wafer to be etched is attached to a negative electrode, or "target," in a glow-discharge circuit. Positive argon ions bombard the wafer surface, resulting in the dislocation of the surface atoms. Power is provided by an RF energy source. Ion beam etching and milling are similar physical etching processes which use a beam of low-energy ions to dislodge material. The ion beam is extracted from an ionized gas (argon or argon/oxygen) or plasma, created by an electrical discharge.

Reactive ion etching (RIE) is a combination of chemical and physical etching. During RIE, a wafer is placed in a chamber with an atmosphere of chemically reactive gas (CF_4 or CCl_4) at a low pressure. An electrical discharge creates an ion plasma with an energy of a few hundred electron volts. The ions strike the wafer surface vertically, where they react to form volatile species that are removed by the low pressure in-line vacuum system.

目的にエッティングできるプラズマエッティングシステムが開発されている。使用されているプラズマエッティング反応器システムには、バレル型（円筒形）と平行平板型（平面）との 2 種類がある。両反応器タイプは同一原理で動作し、主に構成のみが異なる。典型的な反応器は、通常アルミニウム、ガラス又は石英製の真空反応室で構成される。高周波 (RF) エネルギー源を用いて、エッティング剤として作用するフッ素系又は塩素系ガスを活性化させる。ウエハーを反応室に装填し、ポンプで排気した後、反応ガスを導入する。RF エネルギーがガスをイオン化してエッティングプラズマを形成し、これがウエハーと反応して揮発性生成物を生成する。生成物はポンプで排出される。表 3 は各種層のエッティングに使用される材料とプラズマガスを示している。

物理的衝撃法：物理的エッティングプロセスはサンドブラストに類似しており、エッティング対象層にアルゴンガス原子を物理的に衝突させ、真空ポンプシステムで変位した材料を除去する。スパッタエッティングはイオン衝突とエネルギー移動を伴う物理的手法の一つである。エッティング対象のウエハーはグロー放電回路内の陰極（ターゲット）に取り付けられる。正のアルゴンイオンがウエハー表面に衝突し、表面原子の変位を引き起こす。電力は高周波 (RF) エネルギー源から供給される。イオンビームエッティング及びミリングは、低エネルギーイオンビームを用いて材料を除去する類似の物理的エッティングプロセスである。イオンビームは、放電によって生成されたイオン化ガス（アルゴンまたはアルゴン/酸素）又はプラズマから抽出される。

反応性イオンエッティング (RIE) は、化学的エッティングと物理的エッティングとを組み合わせた手法である。RIE では、ウエハーを低圧の化学反応性ガス (CF_4 又は CCl_4) 霧囲気のチャンバー内に配置する。放電により数百電子ボルトのエネルギーを持つイオンプラズマが生成される。イオンはウエハー表面に垂直に衝突し、そこで反応して揮発性物質を形成する。この揮発性物質は、低圧のインライン真空システムによって除去される。

The following are the potential hazards of etching.

- [Acids](#)
- [Reactive Gases](#)
- [Reaction-Product Residues](#)
- [Radiofrequency \(RF\) Radiation](#)

Acids

Potential Hazard

- Possible employee exposure to acids used for wet chemical etching. Typical acids may include mixtures of HF, HCl, H₂SO₄, etc. (see [Table 2](#)).

Possible Solutions

- See [Possible Solutions: Acids and Caustic](#).

Additional Information

- [Occupational Health Guidelines for Chemical Hazards](#). US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control

エッチングに伴う潜在的な危険性は以下のとおりである。

- 酸
- 反応性ガス
- 反応生成物残留物
- 高周波 (RF) 放射

酸

潜在的な危険性

- 湿式化学エッチングに使用される酸への被雇用者のばく露の可能性。代表的な酸には、HF、HCl、H₂SO₄等の混合物が含まれる (表 2 参照)。

可能な解決策

- 「酸及びアルカリ」の可能な解決策を参照。

追加情報

- 化学物質の危険性に関する職業衛生ガイドライン 米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多数の有害化学物質に関するガイドラインの目次を提供。各ファイルには、化学的・物理的特性、健康影響、ばく露限界値、医療監視 (モニタリング)、個人用保護具 (PPE) 及び管理手順に関する推奨事項を含む技術的化学情報が記載されている。

<p>procedures.</p> <p>Reactive Gases</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> Possible employee exposure to fluorinated, chlorinated, and other reactive gases used for dry etching (see Table 3). <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> Identify gas hazards and perform appropriate exposure evaluations. <ul style="list-style-type: none"> Identify and evaluate all potential exposure scenarios, for example: startup, operation, maintenance, cleaning, emergencies, and so forth. See 29 CFR 1910.1000, Table Z-1, which contains permissible exposure limits for various substances. Provide appropriate ventilation to reduce gas concentration levels in the air. Provide PPE as appropriate to prevent contact with gases. [29 CFR 1910 Subpart I] Use respiratory protection when necessary to further reduce exposure and protect employees. [29 CFR 1910.134] Use gas monitoring systems with automatic shut-offs and alarm systems, as appropriate. Design and use specialized processing, material handling, and storage equipment for gases. Consider both normal use and emergency scenarios. Process Safety Management (PSM) 	<p>反応性ガス</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> ドライエッチングに使用されるフッ素系、塩素系その他の反応性ガスへの被雇用者ばく露の可能性（表 3 参照）。 <p>可能な解決策</p> <ul style="list-style-type: none"> ガス危険性を特定し、適切なばく露評価を実施する。 起動、運転、保守、清掃、緊急時等、全ての潜在的なばく露シナリオを特定し、及び評価する。 各種物質の許容ばく露限界値を記載した 29 CFR 1910.1000 表 Z-1 を参照。 空気中のガス濃度を低減するため適切な換気設備を設置する。 ガス接触防止のため適切な個人用保護具（PPE）を支給する。[29 CFR 1910 Subpart I] ばく露をさらに低減して被雇用者を保護するため、必要に応じて呼吸用保護具を使用する。[29 CFR 1910.134] 自動遮断機能及び警報システムを備えたガス監視システムを適切に使用すること。 ガス専用の処理、材料取り扱い、貯蔵設備を設計・使用すること。通常使用
--	--

<p>requirements may also apply. [29 CFR 1910.119]</p>	<p>時と緊急事態との両方を考慮すること。プロセス安全管理（PSM）要件も適用される場合がある。[29 CFR 1910.119]</p>
<p><i>Additional Information</i></p> <ul style="list-style-type: none"> • Preventing Occupational Illnesses through Safer Chemical Management. OSHA. 	<p>追加情報</p> <ul style="list-style-type: none"> • より安全な化学物質管理による職業病の予防。OSHA
<p>OSHA Safety and Health Topics Pages:</p> <ul style="list-style-type: none"> • Compressed Gas and Equipment • Personal Protective Equipment (PPE) • Process Safety Management (PSM) • Respiratory Protection • Ventilation 	<p>OSHA 安全衛生トピックページ：</p> <ul style="list-style-type: none"> • 圧縮ガス及び装置 • 個人用保護具 (PPE) • プロセス安全管理 (PSM) • 呼吸用保護具 • 換気
<p>Radiofrequency (RF) Radiation</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> • Possible employee exposure to radiofrequency (RF) radiation used as an ionizing source for dry etching. 	<p>高周波 (RF) 放射線</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> • ドライエッチングのイオン化源として使用される高周波 (RF) 放射線への被雇用者のばく露の可能性。

<p>Possible Solutions</p> <ul style="list-style-type: none"> • See Possible Solutions: Radiofrequency (RF) and Infrared (IR) Radiation. • Install interlocks and emergency shut-offs on etching equipment. 	<p>可能な解決策</p> <ul style="list-style-type: none"> ・解決策の参照：高周波（RF）及び赤外線（IR）放射線。 <p>エッチング装置にインターロックと緊急停止装置とを設置する</p>
--	--

<h2>↖ Photoresist Stripping</h2>	<h2>フォトレジスト剥離</h2>
<p>After etching, the resist has served its purpose and must be removed from the SiO₂. "Plasma ashing" or "dry stripping" is usually the first step. The wafers are placed into a chamber under vacuum, and oxygen is introduced and subjected to radiofrequency power which creates oxygen radicals. The radicals react with the resist to oxidize it to water, carbon monoxide, and carbon dioxide. The ashing step is usually done to remove the top layer or "skin" of the resist, then additional wet or dry etching processes can be used to strip away the remaining resist (see Etching). Some wet and dry chemical constituents are shown in Table 4. After the stripping is complete, the wafers are rinsed with deionized water to remove any remaining chemicals or resist material.</p> <p>The following are the potential hazards of photoresist stripping.</p> <ul style="list-style-type: none"> • Acids • Solvents 	<p>エッチング後、レジストはその役割を終えたため SiO₂から除去する必要がある。「プラズマアッシング」又は「ドライストリッピング」が通常最初の工程となる。ウェハーは真空チャンバー内に配置され、酸素が導入されると高周波電力が印加され酸素ラジカルが生成される。このラジカルがレジストと反応し、水・一酸化炭素・二酸化炭素へと酸化分解する。アッシング工程は通常、レジストの最上層（スキン）を除去するために行われ、その後追加のウェットエッチング又はドライエッチングプロセスを用いて残存レジストを除去する（エッチング参照）。代表的なウェット/ドライ化学薬品成分を表 4 に示す。ストリッピング完了後、ウェハーは脱イオン水で洗浄され、残留化学薬品やレジスト材料を除去する。</p> <p>フォトレジスト剥離における潜在的な危険性は以下のとおりです。</p> <ul style="list-style-type: none"> ・酸 ・溶剤

<ul style="list-style-type: none"> • Radiofrequency (RF) Radiation 	<p>• 高周波 (RF) 放射線</p>
<h3>Acids</h3>	<p>酸</p>
<h4>Potential Hazard</h4>	<p>潜在的な危険性</p>
<ul style="list-style-type: none"> • Possible employee exposure to acids used for wet chemical etching/stripping (see Table 4). 	<ul style="list-style-type: none"> • 湿式化学エッチング／剥離に使用される酸への被雇用者のばく露の可能性 (表 4 参照)。
<h4>Possible Solutions</h4>	<p>可能な解決策</p>
<ul style="list-style-type: none"> • See Possible Solutions: Acids and Caustic. 	<ul style="list-style-type: none"> • 「可能な解決策：酸及びアルカリ」を参照。
<h3>Solvents</h3>	<p>溶剤</p>
<h4>Potential Hazard</h4>	<p>潜在的な危険性</p>
<ul style="list-style-type: none"> • Possible employee exposure to solvents used for stripping and rinsing (see Table 4). 	<ul style="list-style-type: none"> • 剥離及び洗浄に使用される溶剤への被雇用者のばく露の可能性 (表 4 参照)。
<h4>Possible Solutions</h4>	<p>可能な解決策</p>
<ul style="list-style-type: none"> • See Possible Solutions: Solvents. 	<ul style="list-style-type: none"> • 「溶剤に関する可能な解決策」を参照
<h3>Radiofrequency (RF) Radiation</h3>	<p>高周波 (RF) 放射線</p>
<h4>Potential Hazard</h4>	<p>潜在的な危険性</p>
<ul style="list-style-type: none"> • ドライストリッピングの動力源として使用される高周波 (RF) 放射線への被 	

<ul style="list-style-type: none"> Possible employee exposure to radiofrequency (RF) radiation used as a power source for dry stripping. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> See Possible Solutions: Radiofrequency (RF) and Infrared (IR) Radiation. Install interlocks and emergency shut-offs on etching equipment. 	<p>雇用者のはぐ露の可能性。</p> <p>可能な解決策</p> <ul style="list-style-type: none"> 解決策の参照：高周波（RF）及び赤外線（IR）放射線。 <p>エッチング装置にインターロックと緊急停止装置とを設置する。</p>
---	---

<h3>△ Doping (Junction Formation)</h3>	<h3>ドーピング（接合形成）</h3>
<p>Dopants are impurity elements added to the semiconductor crystal to form electrical junctions or boundaries between "n" and "p" regions in the crystal. An n-type region is an area containing an excess of electrons for conduction of electricity. A p-type region contains an excess of electron holes or acceptors. The difference in electric potentials between the two regions facilitates the flow of electrons through the circuit. The junctions form the essential element for all semiconductor functions. The most common doping methods include diffusion and ion implantation. Materials used for dopants mainly include compounds of antimony, arsenic, phosphorous, and boron, in gaseous, liquid, and solid physical states. Table 5 (資料作成者注：この表5については、原典には見当らない。) identifies various dopants used for both diffusion and ion implantation.</p>	<p>ドーパントは、半導体結晶に添加される不純物元素であり、結晶内の「n」領域と「p」領域の間に電気的接合部又は境界を形成する。n型領域は、電気伝導のために過剰な電子を含む領域である。p型領域は、過剰な電子空孔又は受容体を含む。両領域間の電位差が回路を通る電子の流れを促進する。これらの接合部は、あらゆる半導体機能の必須要素を形成する。最も一般的なドーピング手法には拡散法とイオン注入法がある。ドーパントとして使用される材料は主に、アンチモン、ヒ素、リン、ホウ素の化合物であり、気体、液体及び固体の物理状態が用いられる。表5は拡散法とイオン注入法との双方に使用される各種ドーパントを識別している。</p>
<p>Diffusion</p> <p>Diffusion occurs when impurity atoms or molecules migrate from an area of high concentration to an area of low concentration. Diffusion usually occurs in</p>	<p>拡散</p> <p>拡散は、不純物原子又は分子が高濃度領域から低濃度領域へ移動する際に発生す</p>

two steps: predeposition and drive-in.

During predeposition, the impurity dopant is added to the wafer substrate. Predeposition is done in a furnace at temperatures around 1000-1250°C. The dopant is introduced into the furnace, and may be in the form of a gas, solid, or liquid. Gaseous dopants are mixed with an inert carrier gas, such as nitrogen or argon, and introduced into the furnace. Solid dopants are often applied in a powder form. The solid is heated and a stream of carrier gas moves the dopant into the furnace. Liquid sources are used by bubbling an inert carrier gas through the liquid dopant, and the gas saturated with the liquid is added to the furnace.

The wafers are then put into a second furnace at higher temperatures (about 1300°C) to "drive-in" the dopant. The drive-in process usually occurs in an oxidizing atmosphere so that a protective layer of SiO₂ is grown over the diffused layer.

Ion Implantation

During ion implantation, the dopants are ionized (stripped of electrons), accelerated using an electric field, and deposited in the silicon wafer. Upon striking the wafer, the dopant is embedded at various depths, depending on its mass and energy.

Typically, a gaseous dopant is ionized by electric discharge or by heat from a hot filament. The ions are separated using an electromagnetic field that bends the positively-charged particles to a selected band. This ion band is then passed through a high-current accelerator. The high-velocity beam of

る。拡散は通常、前堆積と拡散との2段階で進行する。

前堆積段階では、不純物ドーパントがウェハー基板に添加される。前堆積は1000~1250°C程度の炉内で行われる。ドーパントは炉内に導入され、気体、固体又は液体の形態をとる。気体ドーパントは窒素やアルゴン等の不活性キャリアガスと混合され炉内に導入される。固体ドーパントは粉末形態で適用されることが多い。固体を加熱し、キャリアガスの流れによってドーパントを炉内に移動させる。液体源を使用する場合は、液体ドーパント中に不活性キャリアガスをバーピングさせ、液体で飽和したガスを炉内に添加する。

その後、ウェハーはより高温（約1300°C）の第二の炉に入れられ、ドーパントを「拡散させる」処理が行われる。拡散処理は通常、酸化雰囲気下で行われるため、拡散層の上に SiO₂ の保護層が形成される。

イオン注入

イオン注入では、ドーパントはイオン化（電子を剥奪）され、電場を用いて加速され、シリコンウェハーに堆積される。ウェハーに衝突すると、ドーパントはその質量及びエネルギーに応じて様々な深さに埋め込まれる。

通常、気体ドーパントは放電又は高温フィラメントからの熱によってイオン化される。イオンは電磁場を用いて分離され、正に帯電した粒子は選択されたバンドへ曲げられる。このイオンバンドは高電流加速器を通過させられる。高速イオンビームはウェハーに集束され、ドーパントイオンがウェハー表面に衝突して浸透

ions is focused on the wafer, causing the dopant ions to strike the wafer surface and penetrate. Sometimes a mask is used to implant a designated pattern on the wafer. As with diffusion, ion implantation allows the formation of junctions by changing the conductivity characteristics of precise regions in the wafer.

Implantation can damage the surface of the wafer. A high-temperature annealing step (800-1000°C) is performed to return the wafer to its original condition and to further incorporate the dopant atoms into the silicon crystal lattice. Stack furnaces, high-energy lasers, electron beams, or flash lamps can be used for annealing.

The following are the potential hazards of doping.

- [Radiofrequency \(RF\) and Infrared \(IR\) Radiation](#)
- [Thermal Burns](#)
- [Flammable, Explosive, and Pyrophoric Gases](#)
- [Toxic, Irritative, and Corrosive Gases and Liquids](#)
- [Reaction-Product Residues](#)
- [X-ray Radiation](#)
- [Electricity](#)
- [Solvents](#)

する。時にマスクを用いてウエハー上に所定のパターンを注入する場合もある。拡散と同様に、イオン注入はウエハー内の特定領域の導電特性を変化させることで接合部の形成を可能とする。

イオン注入はウエハー表面を損傷する可能性がある。ウエハーを元の状態に戻し、さらにドーパント原子をシリコン結晶格子に組み込むため、高温アニール工程 (800~1000°C) を実施する。アニールにはスタック炉、高エネルギーレーザー、電子ビーム、フラッシュランプが使用可能である。

ドーピングに伴う潜在的な危険性は以下のとおりである。

- 高周波 (RF) 及び赤外線 (IR) 放射
- 熱傷
- 可燃性、爆発性及び自然発火性ガス
- 有毒、刺激性及び腐食性ガス及び液体
- 反応生成物残渣
- X 線放射
- 電気
- 溶剤

<ul style="list-style-type: none"> • Lasers 	<ul style="list-style-type: none"> • レーザー
--	--

<p>Toxic, Irritative, and Corrosive Gases and Liquids</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> • Possible employee exposure to toxic, irritative, and corrosive gases and liquids (see Table 5). <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> • See Possible Solutions: Toxic, Irritative, and Corrosive Gases and Liquids. <p>Reaction-Product Residues</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> • Potential chemical exposures to maintenance personnel working on reaction chambers, pumps, and other associated equipment that may contain reaction-product residues. Substances such as arsenic, arsine, phosphine, etc., may be found in ion implantation equipment. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> • See Possible Solutions: Reaction-Product Residues. 	<p>有毒、刺激性、腐食性ガス及び液体</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> • 被雇用者が有毒、刺激性、腐食性ガス及び液体にばく露する可能性（表 5 参照）。 <p>可能な解決策</p> <ul style="list-style-type: none"> • 解決策：有毒、刺激性、腐食性ガス及び液体（該当箇所参照）。 <p>反応生成物残留物</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> • 反応室、ポンプ、その他の関連機器で作業する保守要員が、反応生成物残留物を含む可能性のある物質に化学的にばく露されるおそれがある。イオン注入装置ではヒ素、アルシン、ホスフィン等の物質が検出される場合がある。 <p>可能な解決策</p> <ul style="list-style-type: none"> • 「反応生成物残留物」の可能な解決策を参照のこと。 <p>追加情報</p>
--	--

Additional Information

[Arsenic](#). OSHA Safety and Health Topics Page.

ヒ素。OSHA 安全衛生トピックページ。

Deposition	配列
<p>Deposition is a broad term used in semiconductor processing that refers to the layering of additional material on the wafer surface. These layers may be applied at various stages during the manufacturing process in order to form a mask, to act as a new layer for further junction formation, or to form an insulating layer between two or more conductive layers. The general technique of deposition is known as chemical vapor deposition (CVD). CVD is commonly used to deposit layers of polycrystalline silicon, silicon dioxide, and silicon nitride on the substrate.</p> <p>CVD is accomplished by placing the substrate wafers in a reactor chamber and heating them to a certain temperature. Controlled amounts of silicon or nitride source gases, usually carried by either nitrogen and/or hydrogen, are added to the reactor. Dopant gases may also be added if desired. A reaction between the source gases and the wafer occurs, thereby depositing the desired layer. Reaction temperatures between 500~1100°C and pressures ranging from atmospheric to low pressure are used, depending on the specific deposition performed. Heating is usually accomplished with radiofrequency, infrared, or thermal resistance heating. Common source gases include silane, silicon tetrachloride, ammonia, and nitrous oxide. Some dopant gases that are used include arsine, phosphine, and diborane. The major categories of silicon CVD are shown in Table 6.</p>	<p>配列は半導体製造プロセスにおける広範な用語であり、ウエハー表面に追加材料を層状に形成することを指す。これらの層は製造工程の様々な段階で形成され、マスクを形成するため、さらなる接合形成のための新たな層として機能するため、又は二層以上の導電層間に絶縁層を形成するために用いられる。一般的な成膜技術は化学気相成長法 (CVD) として知られている。CVD は基板上に多結晶シリコン、二酸化ケイ素、窒化ケイ素の層を形成するために広く用いられる。</p> <p>CVD は、基板ウエハーを反応炉内に配置し、所定の温度まで加熱することで実施される。制御された量のシリコン又は窒化物前駆体ガス（通常は窒素及び／又は水素で運搬される。）が反応炉に供給される。必要に応じてドーパントガスも添加される場合がある。前駆体ガスとウエハーとの間で反応が生じ、これにより所望の層が堆積される。反応温度は 500~1100°C、圧力は大気圧から低圧まで、実施する成膜内容に応じて使用される。加熱は通常、高周波、赤外線又は抵抗加熱によって行われる。一般的な原料ガスにはシラン、四塩化ケイ素、アンモニア、亜酸化窒素が含まれる。使用されるドーパントガスにはアルシン、ホスフィン及びジボラン等がある。シリコン CVD の主な分類を表 6 に示す。</p>

Epitaxy is a specific form of CVD that is used to form a thin elemental crystal layer on top of an identical substrate crystal. The main advantage of epitaxy is that a lightly doped layer of epitaxial silicon can be grown on top of a heavily doped silicon substrate, thus creating a layer of differing conductivity that can serve as an insulating layer. Silicon upon silicon is the most common epitaxial process. Usually, hydrogen chloride gas is first used to etch the wafers. Then gases such as silane, dichlorosilane, and trichlorosilane are used to deposit silicon. Light doping of the new crystal layer with additional gases may also be performed. The process is usually carried out at atmospheric pressure and temperatures between 900–1300°C. [Table 7](#) identifies the four major types of vapor phase epitaxy, parameters, and chemical reactions.

The following are the potential hazards of deposition.

- [Electricity](#)
- [Flammable, Explosive and Pyrophoric Gases](#)
- [Toxic, Irritative and Corrosive Gases](#)
- [Radiofrequency \(RF\) and Infrared \(IR\) Radiation](#)
- [Thermal Burns](#)

エピタキシーは、同一の基板結晶上に薄い元素結晶層を形成するために用いられる CVD の特殊な形態である。エピタキシーの主な利点は、高濃度にドーピングされたシリコン基板上に低濃度にドーピングされたエピタキシャルシリコン層を成長させることができ、これにより導電性の異なる層を形成し、絶縁層として機能させられる点にある。シリコン上へのシリコン堆積が最も一般的なエピタキシープロセスである。通常、まず塩化水素ガスを用いてウエハーをエッチングする。その後、シラン、ジクロロシラン、トリクロロシラン等のガスを用いてシリコンを堆積させる。追加のガスを用いて新たな結晶層を軽度ドープすることも可能である。このプロセスは通常、大気圧下で 900～1300°C の温度範囲で行われる。表 7 は、4 つの主要な気相エピタキシーの種類、パラメータ、及び化学反応を示している。

以下のものは、蒸着の潜在的な危険性です。

- 電気
- 可燃性、爆発性及び自然発火性ガス
- 有毒、刺激性及び腐食性ガス
- 高周波 (RF) 及び赤外線 (IR) 放射

<ul style="list-style-type: none"> • Reaction-Product Residues <p>Reaction-Product Residues</p> <p><i>Potential Hazard</i></p> <ul style="list-style-type: none"> • Potential chemical exposures to maintenance personnel working on reaction chambers, pumps, and other associated equipment that may contain reaction-product residues. Substances such as HCl, arsine, phosphine, etc., may be found in deposition equipment. <p><i>Possible Solutions</i></p> <ul style="list-style-type: none"> • See Possible Solutions: Reaction-Product Residues. <p><i>Additional Information</i></p> <ul style="list-style-type: none"> • Occupational Health Guidelines for Chemical Hazards. US Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health (NIOSH) Publication No. 81-123, (1981, January). Provides a table of contents of guidelines for many hazardous chemicals. The files provide technical chemical information, including chemical and physical properties, health effects, exposure limits, and recommendations for medical monitoring, personal protective equipment (PPE), and control procedures 	<ul style="list-style-type: none"> • 熱火傷 • 反応生成物残留物 <p>反応生成物残留物</p> <p>潜在的な危険性</p> <ul style="list-style-type: none"> • 反応室、ポンプ、その他の関連機器で作業する保守要員が、反応生成物残留物を含む可能性のある物質に化学的にばく露されるおそれがある。HCl、アルシン、ホスフィン等の物質が堆積装置内に存在する可能性がある。 <p>可能な解決策</p> <ul style="list-style-type: none"> • 「反応生成物残留物」の可能な解決策を参照のこと。 <p>追加情報</p> <p>化学物質の危険性に関する職業衛生ガイドライン 米国保健社会福祉省 (DHHS)、国立労働安全衛生研究所 (NIOSH) 刊行物番号 81-123 (1981 年 1 月)。多数の有害化学物質に関するガイドラインの目次を提供。各ファイルには、化学的・物理的特性、健康影響、ばく露限界値、医療監視 (モニタリング)、個人用保護具 (PPE) 及び管理手順に関する推奨事項を含む技術的化学情報が記載されている。</p>
---	--

別記 2

表 1~4 及び表 6 (原典には表 5 が欠落しています。) の対訳版の目次

表番号	各表の標題の英語原文	左欄の日本語仮訳
1	Photoresist Systems (Table 1)	フォトレジストシステム (表 1)
2	Wet Chemical Etchants (Table 2)	(湿式湿式化学エッチング剤 (表 2) (対訳版)
3	Plasma Etching Gases and Etched Materials (Table 3)	プラズマエッチングガスとエッチング材料 (表 3)
4	Photoresist Strippers (Table 4)	フォトレジスト剥離剤 (表 4)
6	Major Categories of Silicon Chemical Vapor Deposition (CVD) (Table 6)	シリコン化学気相成長 (CVD) の主要カテゴリー (表 6)

表1~4及び表6（原典には表5が欠落しています。）の対訳版

Photoresist Systems (Table 1)		フォトレジストシステム (表1)
Irradiation Type		照射タイプ
<ul style="list-style-type: none"> • Polymer Base (PB) • Solvent (S) • Developer (D) 		<ul style="list-style-type: none"> ・ ポリマーベース (PB) ・ 溶剤 (S) ・ 現像液 (D)
1. Ultraviolet		1. 紫外線
<ul style="list-style-type: none"> a. Near (350 - 450 nm.) <ul style="list-style-type: none"> i. Negative 		<ul style="list-style-type: none"> a. 近紫外 (350 - 450 nm) <ul style="list-style-type: none"> i. ネガティブ
PB - Azide Base - aliphatic rubber (isoprene)		PB - アジド塩基・脂肪族ゴム (イソプレン)
S - n-butyl acetate, xylene, cellosolve acetate, ethyl benzene		S - n-ブチルアセテート、キシレン、セロソルブアセテート、エチルベンゼン
D - xylene, aliphatic hydrocarbons, n-butyl acetate, cellosolve acetate, stoddard solvent (petroleum distellates)		D - キシレン、脂肪族炭化水素、n-ブチルアセテート、セロソルブアセテート、ストッダード溶媒 (石油脱留物)
<ul style="list-style-type: none"> ii. Positive 		ii. 陽性
PB - ortho-diazoketone		PB - オルト-ジアゾケトン
S - cellosolve acetate, n-butyl acetate, xylene, chlorotoluene		S - セロソルブ酢酸塩、n-ブチルアセテート、キシレン、クロロトルエン
D - sodium hydroxide, silicates, potassium hydroxide		D - 水酸化ナトリウム、ケイ酸塩、水酸化カリウム
<ul style="list-style-type: none"> b. Deep (2000- 250 nm.) 		<ul style="list-style-type: none"> b. 深層 (2000-250 nm)
Primarily positive resists		主に陽性レジスト
2. Electron-Beam (~ 100 nm.)		2. 電子線 (約 100 nm)
<ul style="list-style-type: none"> a. Negative 		<ul style="list-style-type: none"> a. 陰性
PB - copolymer-ethyl acrylate and glycidylmethacrylate (COP)		PB - エチルアクリレートとグリシジルメタクリレート共重合体 (COP)
S - n/a		S - 該当なし
D - n/a		D - 該当なし
<ul style="list-style-type: none"> b. Positive 		<ul style="list-style-type: none"> b. 陽性
PB - polymethylmethacrylate, polyfluoralkylmethacrylate, polyalkylaldehyde, poly-cyano		PB - ポリメチルメタクリレート、ポリフルオロアルキルメタクリレート、ポリアルキルアルデヒド、ポリシアノエチルアクリレート
		S - 該当なし
D - alkaline or isopropyl alcohol (IPA), ethyl acetate, or methyl isobutyl ketone (MIBK)		D - アルカリ若しくはイソプロピルアルコール (IPA)、酢酸エチル又はメチルイソブチルケトン (MIBK)
3. X-ray (0.5 - 5 nm.)		3. X線 (0.5~5 nm)
<ul style="list-style-type: none"> a. Negative 		
PB - co-polymer-ethyl acrylate and glycidyl methacrylate (COP)		

S	-	n/a	a. 陰性
D - n/a	b. Positive		PB - 共重合体-エチルアクリレートおよびグリシジルメタクリレート (COP)
PB	- polymethylmethacrylate, ortho-diazoketone, poly (hexafluorobutylmethacrylate), poly (butene - 1 - sulfone)	n/a	S - 該当なし
S	-	n/a	D - 該当なし
D - n/a			b. 陽性
			PB - ポリメチルメタクリレート、オルト-ジアゾケトン、ポリ (ヘキサフルオロブチルメタクリレート)、ポリ (ブテン-1-スルホン)
			S - 該当なし
			D - 該当なし

Wet Chemical Etchants (Table 2) (湿式湿式化学エッチング剤(表2)(対訳版)

MATERIALS TO ETCH	ETCHANTS
Silicon	
Polycrystalline Silicon (Si)	Hydrofluoric, nitric, acetic acids and iodine Potassium hydroxide Ethylene diamine/catechol Ammonium fluoride, glacial acetic and nitric acids
Silicon Dioxide (SiO ₂)	Buffered oxide etch (BOE) – Hydrofluoric and ammonium fluoride BOE, ethylene glycol, monomethyl ether Hydrofluoric and nitric (P-etch)
Silicon Nitride (Si ₃ N ₄)	Phosphoric and hydrofluoric
CVD Oxide or Pad Etch	Ammonium fluoride, acetic and hydrofluoric acids
METALS	
Aluminum (Al)	Phosphoric, nitric, acetic and hydrochloric acids
Chromium/Nickel (Cr/Ni)	Ceric ammonium nitrate and nitric acid Hydrochloric and nitric acids (aqua regia)
Gold (Au)	Hydrochloric and nitric acids (aqua regia) Potassium iodide (KI) Potassium cyanide (KCN) and hydrogen peroxide (H ₂ O ₂)

MATERIALS TO ETCH	ETCHANTS
	Ferric chloride (FeCl_3) and hydrochloric acid
Silver (Ag)	Ferric nitrate (FeNO_3) and ethylene glycol Nitric acid

Compound	Formula	Standard Concentration (%)
Acetic acid	CH_3COOH	36
Glacial acetic acid	CH_3COOH	99.5
Ammonium fluoride	NH_4F	40
Hydrochloric acid	HC	36
Hydrofluoric acid	HF	49
Nitric acid	HNO_3	67

Compound	Formula	Standard Concentration (%)
Phosphoric acid	H_3PO_4	85
Sulfuric acid	H_2SO_4	96
Potassium hydroxide	KOH	50 or 10
Sodium hydroxide	NaOH	50 or 10

(上記の表の対訳)

エッチング	エッチング剤
シリコン	
多結晶シリコン (Si)	フッ化水素酸、硝酸、酢酸及びヨウ素 水酸化カリウム エチレンジアミン／カテコール フッ化アンモニウム、冰酢酸及び硝酸
二酸化ケイ素 (SiO ₂)	緩衝酸化エッチング (BOE) - フッ化水素酸及びフッ化アンモニウム BOE、エチレングリコール、モノメチルエーテル フッ化水素酸と硝酸 (P エッチング)
窒化ケイ素 (Si ₃ N ₄)	リン酸とフッ化水素酸
CVD 酸化膜又はパッドエッチング	フッ化アンモニウム、酢酸、フッ化水素酸

エッチング	エッチング剤
金属	リン酸、硝酸、酢酸、塩酸
アルミニウム (Al)	硝酸セリウムアンモニウムと硝酸 塩酸と硝酸 (王水)
クロム/ニッケル (Cr/Ni)	塩酸と硝酸 (王水) ヨウ化カリウム (KI) シアノ化カリウム (KCN) と過酸化水素 (H_2O_2)
金 (Au)	塩酸と硝酸 (王水) ヨウ化カリウム (KI) シアノ化カリウム (KCN) と過酸化水素 (H_2O_2) 塩化第二鉄 ($FeCl_3$) と塩酸
銀 (Ag)	硝酸鉄(III) ($FeNO_3$) とエチレングリコール 硝酸

化合物名	化学式	標準濃度 (%)
酢酸	CH_3COOH	36
冰酢酸	CH_3COOH	99.5

化合物名	化学式	標準濃度 (%)
フッ化アンモニウム	NH_4F	40
塩酸	HCl	40
フッ化水素酸	HF	36
硝酸	HNO_3	49

リン酸	H_3PO_4	67
硫酸	H_2SO_4	85
水酸化カリウム	KOH	96
水酸化ナトリウム	NaOH	50 or 10

Plasma Etching Gases and Etched Materials (Table 3)

Material	Gas
Silicon	
Polysilicon (Si) and Silicon	CF + O ₂ , CCl ₃ or CF ₃ Cl, CF ₄ and HCl
Silicon Dioxide (SiO ₂)	C ₂ F ₆ , C ₃ F ₈ , CF ₄ , SiF ₄ , C ₅ F ₁₂ , CHF ₃ , CCl ₂ F ₂ , SF ₆ , HF
Silicon Nitride (Si ₃ N ₄)	CF ₄ + Ar, CF ₄ + O ₂ , CF ₄ + H ₂
Metals	
Aluminum (Al)	CCl ₄ or BCl ₃ + He or Ar
Chromium (Cr)	CCl ₄
Chromium Oxide (CrO ₃)	Cl ₂ + Ar or CCl ₄ + Ar
Gallium Arsenide (GaAs)	CCl ₂ F ₂
Vanadium (V)	CF ₄
Titanium (Ti)	
Tantalum (Ta)	
Molybdenum (Mo)	
Tungsten (W)	

(上記の表 3 の対訳)

プラズマエッティングガスとエッティング材料 (表 3)

材料	材料
シリコン	

ポリシリコン (Si) とシリコン	CF + O ₂ , CCl ₃ or CF ₃ Cl, CF ₄ and HCl
二酸化ケイ素 (SiO ₂) リコン	C ₂ F ₆ , C ₃ F ₈ , CF ₄ , SiF ₄ , C ₅ F ₁₂ , CHF ₃ , CCl ₂ F ₂ , SF ₆ , HF
窒化ケイ素 (Si ₃ N ₄)	CF ₄ + Ar, CF ₄ + O ₂ , CF ₄ + H ₂
金属	
アルミニウム (Al)	CCl ₄ or BCl ₃ + He or Ar
クロム (Cr)	CCl ₄
酸化クロム (CrO ₃)	Cl ₂ + Ar or CCl ₄ + Ar
ガリウムヒ素 (GaAs)	CCl ₂ F ₂
バナジウム (V)	CF ₄
チタン (Ti)	
タンタル (Ta)	
モリブデン (Mo)	
タンクスチタン (W)	

Photoresist Strippers (Table 4)	フォトレジスト剥離剤 (表 4)
Wet Chemical	湿式化学処理
<ul style="list-style-type: none"> Acid <ol style="list-style-type: none"> Sulfuric (H_2SO_4) and Chromic (CrO_3) Sulfuric (H_2SO_4) and Ammonium Persulfate ($(NH_4)_2S_2O_8$) Sulfuric (H_2SO_4) and Hydrogen Peroxide (H_2O_2) Organics <ol style="list-style-type: none"> Phenols, sulfonic acids, trichlorobenzene, perchloroethylene Glycol ethers, ethanolamine, triethanolamine Sodium hydroxide and silicates (positive resist) 	<ul style="list-style-type: none"> 硫酸 (H_2SO_4) とクロム酸 (CrO_3) 硫酸 (H_2SO_4) と過硫酸アンモニウム ($(NH_4)_2S_2O_8$) 硫酸 (H_2SO_4) と過酸化水素 (H_2O_2) 有機系 <ol style="list-style-type: none"> フェノール類、スルホン酸、トリクロロベンゼン、ペルクロロエチレン グリコールエーテル、エタノールアミン、トリエタノールアミン 水酸化ナトリウムとケイ酸塩 (ポジ型レジスト)
Dry Chemical	乾式化学処理
<ul style="list-style-type: none"> Plasma Ashing (Stripping) <ol style="list-style-type: none"> RF (radio frequency) power source - 13.56 MHz frequency Oxygen (O_2) source gas Oil lubricated vacuum pump system with liquid nitrogen trap 	<ul style="list-style-type: none"> プラズマアッシング (ストリッピング) <ol style="list-style-type: none"> RF (高周波) 電源 - 13.56 MHz 周波数 酸素 (O_2) 源ガス 液体窒素トラップ付き油潤滑真空ポンプシステム

Major Categories of Silicon Chemical Vapor Deposition (CVD) (Table 6)

Parameters	<ul style="list-style-type: none"> • Pressure - Atmospheric or low pressure (LPCVD) • Temperature - 500-1100° C • Silicon and nitride sources - Silane (SiH₄), Silicon Tetrachloride (SiCl₄), Ammonia (NH₃), Nitrous Oxide (N₂O) • Dopant sources - Arsine (AsH₃), Phosphine (PH₃), Diborane (B₂H₆) • Carrier gases - Nitrogen (N₂), Hydrogen (H₂) • Heating source - <ul style="list-style-type: none"> • Cold wall system - Radio frequency (RF) or Infrared (IR) • Hot wall system - thermal resistance
CVD Type	
1. Medium temperature (~ 600-1100°C)	
a. Silicon Nitride (Si ₃ N ₄)	
3 SiH ₄ + 4 NH ₃ → Si ₃ N ₄ + 12 H ₂	
H ₂ carrier gas (900-1100°C)	
b. Poly Silicon (Poly Si)	
SiH ₄ + Heat → Si + 2 H ₂	
H ₂ carrier gas (850-1000°C)	
N ₂ carrier gas (600-700°C)	
c. Silicon Dioxide (SiO ₂)	
1. SiH ₄ + 4 CO ₂ → SiO ₂ + 4 CO + 2 H ₂ O	
N ₂ carrier gas (500-900°C)	
2. 2 H ₂ + SiCl ₄ + CO ₂ → SiO ₂ + 4 HCl *	
H ₂ carrier gas (800-1000°C)	
3. SiH ₄ + CO → SiO ₂ + 2 H ₂ *	
H ₂ Carrier gas (600-900°C)	
2. Low Temperature (~<600°C) Silox, Pyrox, Vapox and Nitrox**	
a. Silicon Dioxide (SiO ₂) or p-doped SiO ₂	
1. Silox	
SiH ₄ + 2 O ₂ + Dopant → SiO ₂ + 2 H ₂ O	
N ₂ carrier gas (200-500°C)	
2. Pyrox	
SiH ₄ + 2 O ₂ + Dopant → SiO ₂ + 2 H ₂ O	
N ₂ carrier gas (<600°C)	

シリコン化学気相成長 (CVD) の主要カテゴリー (表 6)

パラメータ	
● 圧力 - 大気圧又は低圧 (LPCVD)	
● 温度 - 500~1100° C	
● シリコン及び窒化物原料 - シラン (SiH ₄)、四塩化ケイ素 (SiCl ₄)、アンモニア (NH ₃)、亜酸化窒素 (N ₂ O)	
● ドーパント原料 - アルシン (AsH ₃)、ホスフィン (PH ₃)、ジボラン (B ₂ H ₆)	
● キャリアガス - 窒素 (N ₂)、水素 (H ₂)	
● 加熱源 -	
● コールドウォールシステム - 高周波 (RF) 又は赤外線 (IR)	
● ホットウォールシステム - 熱抵抗	
CVD タイプ	
1. 中温域 (約 600-1100° C)	
a. 窒化ケイ素 (Si ₃ N ₄)	
3 SiH ₄ + 4 NH ₃ → Si ₃ N ₄ + 12 H ₂	
H ₂ キャリアガス (900-1100°C)	
b. ポリシリコン (ポリシリコン)	
SiH ₄ + 熱 → Si + 2 H ₂	
H ₂ キャリアガス (850-1000° C)	
N ₂ キャリアガス (600-700° C)	
c. 二酸化ケイ素 (SiO ₂)	
1. SiH ₄ + 4 CO ₂ → SiO ₂ + 4 CO + 2 H ₂ O	
N ₂ キャリアガス (500-900° C)	
2. 2 H ₂ + SiCl ₄ + CO ₂ → SiO ₂ + 4 HCl *	
H ₂ キャリアガス (800-1000° C)	
3. SiH ₄ + CO → SiO ₂ + 2 H ₂ *	
H ₂ キャリアガス (600-900° C)	
2. 低温 (~<600° C) シルオックス、パイロックス、バボックス、ニトロックス **	
a. 二酸化ケイ素 (SiO ₂) 又は p型ドープ SiO ₂	
1. シルオックス	
SiH ₄ + 2 O ₂ + ドーパント → SiO ₂ + 2 H ₂ O	

<p>3. Vapox</p> $\text{SiH}_4 + 2 \text{O}_2 + \text{Dopant} \rightarrow \text{SiO}_2 + 2 \text{H}_2\text{O}$ <p>N₂ carrier gas (<600°C)</p> <p>b. Silicon Nitride (Si₃N₄)</p> <p>1. Nitrox</p> $3 \text{SiH}_4 + 4 \text{NH}_3 \text{ (or N}_2\text{O}^*) \rightarrow \text{Si}_3\text{N}_4 + 12 \text{H}_2$ <p>N₂ carrier gas (600-700°C)</p> <p>3. Low Temperature Plasma Enhance (passivation) (<600°C)</p> <p>Utilizing radio frequency (RF) or reactive sputtering</p> <p>a. Silicon Dioxide (SiO₂)</p> $\text{SiH}_4 + 2 \text{O}_2 \rightarrow \text{SiO}_2 + 2 \text{H}_2\text{O}$ <p>b. Silicon Nitride</p> $3 \text{SiH}_4 + 4 \text{NH}_3 \text{ (or N}_2\text{O}^*) \rightarrow \text{Si}_3\text{N}_4 + 12 \text{H}_2$ <p>* Note: Reactions do not balance stoichiometrically</p> <p>** Generic, proprietary or trademark names for CVD reactor systems</p>	<p>N₂ キャリアガス (200-500°C)</p> <p>2. パイロックス</p> $\text{SiH}_4 + 2 \text{O}_2 + \text{ドーパント} \rightarrow \text{SiO}_2 + 2 \text{H}_2\text{O}$ <p>N₂ キャリアガス (<600°C)</p> <p>3. ベポックス</p> $\text{SiH}_4 + 2 \text{O}_2 + \text{ドーパント} \rightarrow \text{SiO}_2 + 2 \text{H}_2\text{O}$ <p>N₂ キャリアガス (<600°C)</p> <p>b. 窒化ケイ素 (Si₃N₄)</p> <p>1. ニトロックス</p> $3 \text{SiH}_4 + 4 \text{NH}_3 \text{ (又は N}_2\text{O}^*) \rightarrow \text{Si}_3\text{N}_4 + 12 \text{H}_2$ <p>N₂ キャリアガス (600-700°C)</p> <p>3. 低温プラズマ強化 (パッシベーション) (<600°C)</p> <p>高周波 (RF) 又は反応性スパッタリングを利用</p> <p>a. 二酸化ケイ素 (SiO₂)</p> $\text{SiH}_4 + 2 \text{O}_2 \rightarrow \text{SiO}_2 + 2 \text{H}_2\text{O}$ <p>b. 窒化ケイ素</p> $3 \text{SiH}_4 + 4 \text{NH}_3 \text{ (又は N}_2\text{O}^*) \rightarrow \text{Si}_3\text{N}_4 + 12 \text{H}_2$ <p>* 注: 反応は化学量論的に平衡しない</p> <p>** CVD 反応装置システムの一般名、独自名称又は商標名</p>
---	---